Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793231006> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2793231006 abstract "Background. Prostate segmentation is a crucial step in computer-aided systems for prostate cancer detection. Multi-planar acquisitions are commonly used by clinicians to obtain a more accurate patient diagnosis but their relevance in prostate segmentation using fully automated algorithms has not been assessed. To date, the limited assessment of this relevance stems from the fact that both axial and sagittal prostate imaging views, as opposed to a single view, doubles the acquisition time. In this work, we assess the relevance of multi-planar imaging for prostate segmentation within a deep learning segmentation framework. Materials and Methods. We propose a deep learning prostate segmentation framework either from either axial or from axial and sagittal T2-weighted magnetic resonance images (MRI). The system is based on an ensemble of convolutional neural networks, each independently trained on a single imaging view. We compare single-view (axial) segmentations to those obtained from two imaging views (axial and sagittal) to assess the relevance of using multi-planar acquisitions. Algorithm performance assessment will be two-fold: 1) the global DICE score between the algorithm’s predictions and the segmentations of an experienced reader will be computed and 2) the number of lesions located within the algorithm’s segmentation prediction will be calculated. A subset of 80 patients from the public PROSTATEx-2 database containing both axial and sagittal T2-weighted MRIs will be used for this study. Results. The multiplanar network outperformed the network trained on only axial views according to both the proposed metrics. A statistically significant increase of 4% in DICE scores was found along with an 9% increase in the number of lesions within the predicted segmentation. Conclusions. The proposed method allows for a fully automatic segmentation of the prostate from single- or multi-view MRI and assesses the relevance of multi-planar MRI acquisitions for fully automatic prostate segmentation algorithms." @default.
- W2793231006 created "2018-03-29" @default.
- W2793231006 creator A5041953655 @default.
- W2793231006 creator A5048940233 @default.
- W2793231006 creator A5058831216 @default.
- W2793231006 creator A5068758507 @default.
- W2793231006 creator A5087215721 @default.
- W2793231006 date "2018-03-06" @default.
- W2793231006 modified "2023-10-18" @default.
- W2793231006 title "Assessing the relevance of multi-planar MRI acquisitions for prostate segmentation using deep learning techniques" @default.
- W2793231006 cites W1971318487 @default.
- W2793231006 cites W1983709701 @default.
- W2793231006 cites W2105548709 @default.
- W2793231006 cites W2106571043 @default.
- W2793231006 cites W2107030642 @default.
- W2793231006 cites W2127890285 @default.
- W2793231006 cites W2145046071 @default.
- W2793231006 cites W2146512659 @default.
- W2793231006 cites W2235498484 @default.
- W2793231006 cites W2322371438 @default.
- W2793231006 cites W2323868208 @default.
- W2793231006 cites W4234432481 @default.
- W2793231006 doi "https://doi.org/10.1117/12.2293514" @default.
- W2793231006 hasPublicationYear "2018" @default.
- W2793231006 type Work @default.
- W2793231006 sameAs 2793231006 @default.
- W2793231006 citedByCount "0" @default.
- W2793231006 crossrefType "proceedings-article" @default.
- W2793231006 hasAuthorship W2793231006A5041953655 @default.
- W2793231006 hasAuthorship W2793231006A5048940233 @default.
- W2793231006 hasAuthorship W2793231006A5058831216 @default.
- W2793231006 hasAuthorship W2793231006A5068758507 @default.
- W2793231006 hasAuthorship W2793231006A5087215721 @default.
- W2793231006 hasConcept C108583219 @default.
- W2793231006 hasConcept C121608353 @default.
- W2793231006 hasConcept C124504099 @default.
- W2793231006 hasConcept C126322002 @default.
- W2793231006 hasConcept C126838900 @default.
- W2793231006 hasConcept C143409427 @default.
- W2793231006 hasConcept C153180895 @default.
- W2793231006 hasConcept C154945302 @default.
- W2793231006 hasConcept C158154518 @default.
- W2793231006 hasConcept C17744445 @default.
- W2793231006 hasConcept C178910020 @default.
- W2793231006 hasConcept C199539241 @default.
- W2793231006 hasConcept C2776235491 @default.
- W2793231006 hasConcept C2780192828 @default.
- W2793231006 hasConcept C31972630 @default.
- W2793231006 hasConcept C41008148 @default.
- W2793231006 hasConcept C71924100 @default.
- W2793231006 hasConcept C81363708 @default.
- W2793231006 hasConcept C89600930 @default.
- W2793231006 hasConceptScore W2793231006C108583219 @default.
- W2793231006 hasConceptScore W2793231006C121608353 @default.
- W2793231006 hasConceptScore W2793231006C124504099 @default.
- W2793231006 hasConceptScore W2793231006C126322002 @default.
- W2793231006 hasConceptScore W2793231006C126838900 @default.
- W2793231006 hasConceptScore W2793231006C143409427 @default.
- W2793231006 hasConceptScore W2793231006C153180895 @default.
- W2793231006 hasConceptScore W2793231006C154945302 @default.
- W2793231006 hasConceptScore W2793231006C158154518 @default.
- W2793231006 hasConceptScore W2793231006C17744445 @default.
- W2793231006 hasConceptScore W2793231006C178910020 @default.
- W2793231006 hasConceptScore W2793231006C199539241 @default.
- W2793231006 hasConceptScore W2793231006C2776235491 @default.
- W2793231006 hasConceptScore W2793231006C2780192828 @default.
- W2793231006 hasConceptScore W2793231006C31972630 @default.
- W2793231006 hasConceptScore W2793231006C41008148 @default.
- W2793231006 hasConceptScore W2793231006C71924100 @default.
- W2793231006 hasConceptScore W2793231006C81363708 @default.
- W2793231006 hasConceptScore W2793231006C89600930 @default.
- W2793231006 hasLocation W27932310061 @default.
- W2793231006 hasOpenAccess W2793231006 @default.
- W2793231006 hasPrimaryLocation W27932310061 @default.
- W2793231006 hasRelatedWork W1968747769 @default.
- W2793231006 hasRelatedWork W1989298041 @default.
- W2793231006 hasRelatedWork W1992533954 @default.
- W2793231006 hasRelatedWork W2005339763 @default.
- W2793231006 hasRelatedWork W2124489468 @default.
- W2793231006 hasRelatedWork W2586435489 @default.
- W2793231006 hasRelatedWork W2602669237 @default.
- W2793231006 hasRelatedWork W2749474653 @default.
- W2793231006 hasRelatedWork W2762363380 @default.
- W2793231006 hasRelatedWork W2790296028 @default.
- W2793231006 hasRelatedWork W2806236206 @default.
- W2793231006 hasRelatedWork W2887533690 @default.
- W2793231006 hasRelatedWork W2914806156 @default.
- W2793231006 hasRelatedWork W2927175382 @default.
- W2793231006 hasRelatedWork W2942988769 @default.
- W2793231006 hasRelatedWork W2951505611 @default.
- W2793231006 hasRelatedWork W2972429586 @default.
- W2793231006 hasRelatedWork W3089094239 @default.
- W2793231006 hasRelatedWork W3190434406 @default.
- W2793231006 hasRelatedWork W66531091 @default.
- W2793231006 isParatext "false" @default.
- W2793231006 isRetracted "false" @default.
- W2793231006 magId "2793231006" @default.
- W2793231006 workType "article" @default.