Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793235906> ?p ?o ?g. }
- W2793235906 endingPage "707" @default.
- W2793235906 startingPage "697" @default.
- W2793235906 abstract "The authors developed a fully automated framework to quantify myocardial blood flow (MBF) from contrast-enhanced cardiac magnetic resonance (CMR) perfusion imaging and evaluated its diagnostic performance in patients.Fully quantitative CMR perfusion pixel maps were previously validated with microsphere MBF measurements and showed potential in clinical applications, but the methods required laborious manual processes and were excessively time-consuming.CMR perfusion imaging was performed on 80 patients with known or suspected coronary artery disease (CAD) and 17 healthy volunteers. Significant CAD was defined by quantitative coronary angiography (QCA) as ≥70% stenosis. Nonsignificant CAD was defined by: 1) QCA as <70% stenosis; or 2) coronary computed tomography angiography as <30% stenosis and a calcium score of 0 in all vessels. Automatically generated MBF maps were compared with manual quantification on healthy volunteers. Diagnostic performance of the automated MBF pixel maps was analyzed on patients using absolute MBF, myocardial perfusion reserve (MPR), and relative measurements of MBF and MPR.The correlation between automated and manual quantification was excellent (r = 0.96). Stress MBF and MPR in the ischemic zone were lower than those in the remote myocardium in patients with significant CAD (both p < 0.001). Stress MBF and MPR in the remote zone of the patients were lower than those in the normal volunteers (both p < 0.001). All quantitative metrics had good area under the curve (0.864 to 0.926), sensitivity (82.9% to 91.4%), and specificity (75.6% to 91.1%) on per-patient analysis. On a per-vessel analysis of the quantitative metrics, area under the curve (0.837 to 0.864), sensitivity (75.0% to 82.7%), and specificity (71.8% to 80.9%) were good.Fully quantitative CMR MBF pixel maps can be generated automatically, and the results agree well with manual quantification. These methods can discriminate regional perfusion variations and have high diagnostic performance for detecting significant CAD. (Technical Development of Cardiovascular Magnetic Resonance Imaging; NCT00027170)." @default.
- W2793235906 created "2018-03-29" @default.
- W2793235906 creator A5008162254 @default.
- W2793235906 creator A5024196827 @default.
- W2793235906 creator A5025855047 @default.
- W2793235906 creator A5026410068 @default.
- W2793235906 creator A5042753566 @default.
- W2793235906 creator A5044993271 @default.
- W2793235906 creator A5049270829 @default.
- W2793235906 creator A5056769337 @default.
- W2793235906 creator A5066871267 @default.
- W2793235906 creator A5086010156 @default.
- W2793235906 creator A5089689589 @default.
- W2793235906 date "2018-05-01" @default.
- W2793235906 modified "2023-10-06" @default.
- W2793235906 title "Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance" @default.
- W2793235906 cites W126429882 @default.
- W2793235906 cites W1688749703 @default.
- W2793235906 cites W1931160891 @default.
- W2793235906 cites W1965540800 @default.
- W2793235906 cites W1970122309 @default.
- W2793235906 cites W1972241213 @default.
- W2793235906 cites W1972958811 @default.
- W2793235906 cites W1991281058 @default.
- W2793235906 cites W2010769464 @default.
- W2793235906 cites W2047815743 @default.
- W2793235906 cites W2061339720 @default.
- W2793235906 cites W2078284051 @default.
- W2793235906 cites W2079598854 @default.
- W2793235906 cites W2083321631 @default.
- W2793235906 cites W2103476848 @default.
- W2793235906 cites W2124588603 @default.
- W2793235906 cites W2128891721 @default.
- W2793235906 cites W2131973318 @default.
- W2793235906 cites W2133596198 @default.
- W2793235906 cites W2137401870 @default.
- W2793235906 cites W2141050892 @default.
- W2793235906 cites W2141312937 @default.
- W2793235906 cites W2148200281 @default.
- W2793235906 cites W2152752458 @default.
- W2793235906 cites W2152836922 @default.
- W2793235906 cites W2167279472 @default.
- W2793235906 cites W2202561804 @default.
- W2793235906 cites W2216368226 @default.
- W2793235906 cites W2318686907 @default.
- W2793235906 cites W251459077 @default.
- W2793235906 cites W2587963625 @default.
- W2793235906 cites W2605037578 @default.
- W2793235906 cites W2768931683 @default.
- W2793235906 doi "https://doi.org/10.1016/j.jcmg.2018.01.005" @default.
- W2793235906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29454767" @default.
- W2793235906 hasPublicationYear "2018" @default.
- W2793235906 type Work @default.
- W2793235906 sameAs 2793235906 @default.
- W2793235906 citedByCount "94" @default.
- W2793235906 countsByYear W27932359062018 @default.
- W2793235906 countsByYear W27932359062019 @default.
- W2793235906 countsByYear W27932359062020 @default.
- W2793235906 countsByYear W27932359062021 @default.
- W2793235906 countsByYear W27932359062022 @default.
- W2793235906 countsByYear W27932359062023 @default.
- W2793235906 crossrefType "journal-article" @default.
- W2793235906 hasAuthorship W2793235906A5008162254 @default.
- W2793235906 hasAuthorship W2793235906A5024196827 @default.
- W2793235906 hasAuthorship W2793235906A5025855047 @default.
- W2793235906 hasAuthorship W2793235906A5026410068 @default.
- W2793235906 hasAuthorship W2793235906A5042753566 @default.
- W2793235906 hasAuthorship W2793235906A5044993271 @default.
- W2793235906 hasAuthorship W2793235906A5049270829 @default.
- W2793235906 hasAuthorship W2793235906A5056769337 @default.
- W2793235906 hasAuthorship W2793235906A5066871267 @default.
- W2793235906 hasAuthorship W2793235906A5086010156 @default.
- W2793235906 hasAuthorship W2793235906A5089689589 @default.
- W2793235906 hasBestOaLocation W27932359061 @default.
- W2793235906 hasConcept C126322002 @default.
- W2793235906 hasConcept C126838900 @default.
- W2793235906 hasConcept C135691158 @default.
- W2793235906 hasConcept C143409427 @default.
- W2793235906 hasConcept C146957229 @default.
- W2793235906 hasConcept C158846371 @default.
- W2793235906 hasConcept C164705383 @default.
- W2793235906 hasConcept C2778213512 @default.
- W2793235906 hasConcept C2778405248 @default.
- W2793235906 hasConcept C2780007028 @default.
- W2793235906 hasConcept C2780643987 @default.
- W2793235906 hasConcept C2987145844 @default.
- W2793235906 hasConcept C2989005 @default.
- W2793235906 hasConcept C3019004856 @default.
- W2793235906 hasConcept C500558357 @default.
- W2793235906 hasConcept C71924100 @default.
- W2793235906 hasConceptScore W2793235906C126322002 @default.
- W2793235906 hasConceptScore W2793235906C126838900 @default.
- W2793235906 hasConceptScore W2793235906C135691158 @default.
- W2793235906 hasConceptScore W2793235906C143409427 @default.
- W2793235906 hasConceptScore W2793235906C146957229 @default.
- W2793235906 hasConceptScore W2793235906C158846371 @default.
- W2793235906 hasConceptScore W2793235906C164705383 @default.
- W2793235906 hasConceptScore W2793235906C2778213512 @default.