Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793261105> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2793261105 endingPage "350" @default.
- W2793261105 startingPage "338" @default.
- W2793261105 abstract "Abstract Infrared region of electromagnetic spectrum has remarkable applications in crop studies. Infrared along with Red band has been used to develop certain vegetation indices. These indices like NDVI, EVI provide important information on any crop physiological stages. The main objective of this research was to discriminate 4 different soybean varieties (BMX Potencia, NA5909, FT Campo Mourao and Don Mario) using non-imaging hyperspectral sensor. The study was conducted in four agricultural areas in the municipality of Deodapolis (MS), Brazil. For spectral analysis, 2400 field samples were taken from soybean leaves by means of FieldSpec 3 JR spectroradiometer in the range from 350 to 2500 nm. The data were evaluated through multivariate analysis with the whole set of spectral curves isolated by blue, green, red and near infrared wavelengths along with the addition of vegetation indices like (Enhanced Vegetation Index - EVI, Normalized Difference Vegetation Index - NDVI, Green Normalized Difference Vegetation Index - GNDVI, Soil-adjusted Vegetation Index - SAVI, Transformed Vegetation Index - TVI and Optimized Soil-Adjusted Vegetation Index - OSAVI). A number of the analysis performed where, discriminant (60 and 80% of the data), simulated discriminant (40 and 20% of data), principal component (PC) and cluster analysis (CA). Discriminant and simulated discriminant analyze presented satisfactory results, with average global hit rates of 99.28 and 98.77%, respectively. The results obtained by PC and CA revealed considerable associations between the evaluated variables and the varieties, which indicated that each variety has a variable that discriminates it more effectively in relation to the others. There was great variation in the sample size (number of leaves) for estimating the mean of variables. However, it was possible to observe that 200 leaves allow to obtain a maximum error of 2% in relation to the mean." @default.
- W2793261105 created "2018-03-29" @default.
- W2793261105 creator A5011640523 @default.
- W2793261105 creator A5032867279 @default.
- W2793261105 creator A5040950081 @default.
- W2793261105 creator A5044762159 @default.
- W2793261105 creator A5057134689 @default.
- W2793261105 creator A5057163343 @default.
- W2793261105 creator A5063718652 @default.
- W2793261105 creator A5069223425 @default.
- W2793261105 creator A5069609123 @default.
- W2793261105 creator A5083326008 @default.
- W2793261105 date "2018-03-01" @default.
- W2793261105 modified "2023-09-30" @default.
- W2793261105 title "Soybean varieties discrimination using non-imaging hyperspectral sensor" @default.
- W2793261105 cites W180836830 @default.
- W2793261105 cites W1964217023 @default.
- W2793261105 cites W1978546823 @default.
- W2793261105 cites W2000613913 @default.
- W2793261105 cites W2002931836 @default.
- W2793261105 cites W2011010318 @default.
- W2793261105 cites W2012686349 @default.
- W2793261105 cites W2016381774 @default.
- W2793261105 cites W2037929503 @default.
- W2793261105 cites W2040145414 @default.
- W2793261105 cites W2058246635 @default.
- W2793261105 cites W2061892916 @default.
- W2793261105 cites W2066693947 @default.
- W2793261105 cites W2081201347 @default.
- W2793261105 cites W2081386281 @default.
- W2793261105 cites W2097192876 @default.
- W2793261105 cites W2098108008 @default.
- W2793261105 cites W2116563724 @default.
- W2793261105 cites W2146501057 @default.
- W2793261105 cites W2186586204 @default.
- W2793261105 cites W2316415230 @default.
- W2793261105 cites W2318601182 @default.
- W2793261105 cites W2418751826 @default.
- W2793261105 cites W2548878763 @default.
- W2793261105 cites W2550875838 @default.
- W2793261105 cites W2579246329 @default.
- W2793261105 cites W2612355489 @default.
- W2793261105 cites W2615516218 @default.
- W2793261105 doi "https://doi.org/10.1016/j.infrared.2018.01.027" @default.
- W2793261105 hasPublicationYear "2018" @default.
- W2793261105 type Work @default.
- W2793261105 sameAs 2793261105 @default.
- W2793261105 citedByCount "37" @default.
- W2793261105 countsByYear W27932611052019 @default.
- W2793261105 countsByYear W27932611052020 @default.
- W2793261105 countsByYear W27932611052021 @default.
- W2793261105 countsByYear W27932611052022 @default.
- W2793261105 countsByYear W27932611052023 @default.
- W2793261105 crossrefType "journal-article" @default.
- W2793261105 hasAuthorship W2793261105A5011640523 @default.
- W2793261105 hasAuthorship W2793261105A5032867279 @default.
- W2793261105 hasAuthorship W2793261105A5040950081 @default.
- W2793261105 hasAuthorship W2793261105A5044762159 @default.
- W2793261105 hasAuthorship W2793261105A5057134689 @default.
- W2793261105 hasAuthorship W2793261105A5057163343 @default.
- W2793261105 hasAuthorship W2793261105A5063718652 @default.
- W2793261105 hasAuthorship W2793261105A5069223425 @default.
- W2793261105 hasAuthorship W2793261105A5069609123 @default.
- W2793261105 hasAuthorship W2793261105A5083326008 @default.
- W2793261105 hasConcept C120665830 @default.
- W2793261105 hasConcept C121332964 @default.
- W2793261105 hasConcept C127313418 @default.
- W2793261105 hasConcept C154945302 @default.
- W2793261105 hasConcept C159078339 @default.
- W2793261105 hasConcept C41008148 @default.
- W2793261105 hasConcept C62649853 @default.
- W2793261105 hasConcept C76935873 @default.
- W2793261105 hasConceptScore W2793261105C120665830 @default.
- W2793261105 hasConceptScore W2793261105C121332964 @default.
- W2793261105 hasConceptScore W2793261105C127313418 @default.
- W2793261105 hasConceptScore W2793261105C154945302 @default.
- W2793261105 hasConceptScore W2793261105C159078339 @default.
- W2793261105 hasConceptScore W2793261105C41008148 @default.
- W2793261105 hasConceptScore W2793261105C62649853 @default.
- W2793261105 hasConceptScore W2793261105C76935873 @default.
- W2793261105 hasLocation W27932611051 @default.
- W2793261105 hasOpenAccess W2793261105 @default.
- W2793261105 hasPrimaryLocation W27932611051 @default.
- W2793261105 hasRelatedWork W1992477407 @default.
- W2793261105 hasRelatedWork W1999759334 @default.
- W2793261105 hasRelatedWork W2004982469 @default.
- W2793261105 hasRelatedWork W2047482684 @default.
- W2793261105 hasRelatedWork W2059707233 @default.
- W2793261105 hasRelatedWork W2079858575 @default.
- W2793261105 hasRelatedWork W2123671285 @default.
- W2793261105 hasRelatedWork W2765357241 @default.
- W2793261105 hasRelatedWork W3094319899 @default.
- W2793261105 hasRelatedWork W3200252912 @default.
- W2793261105 hasVolume "89" @default.
- W2793261105 isParatext "false" @default.
- W2793261105 isRetracted "false" @default.
- W2793261105 magId "2793261105" @default.
- W2793261105 workType "article" @default.