Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793325595> ?p ?o ?g. }
- W2793325595 endingPage "306" @default.
- W2793325595 startingPage "293" @default.
- W2793325595 abstract "Slow moving landslides are widespread geomorphological features in the Northern Apennines of Italy where they represent one of the main landscape forming processes. The lithology of the Northern Apennines fold and thrust belt is characterized by alternations of sandstone, siltstone and clayshales, also known as flysch, and clay shales with a chaotic block in matrix fabric, which are often interpreted as tectonic or sedimentary mélanges. While flysch rocks with a high pelitic fraction host earthslides that occasionally evolve into flow like movements, earthflows are the dominant landslide type in chaotic clay shales. In the present work, we document the kinematic response to rainfall of landslides in these different lithologies using radar interferometry. The study area includes three river catchments in the Northern Apennines. Here, the Mediterranean climate is characterized by two wet seasons during autumn and spring respectively, separated by dry summers and winters with moderate precipitation. We use SAR imagery from the X-band satellite COSMO SkyMed and from the C-band satellite Sentinel 1 to retrieve spatial displacement measurements between 2009 and 2016 for 25 landslides in our area of interest. We also document detailed temporal and spatial deformation signals for eight representative landslides, although the InSAR derived deformation signal is only well constrained by our dataset during the years 2013 and 2015. In spring 2013, long enduring rainfalls struck the study area and numerous landslide reactivations were documented by the regional authorities. During 2013, we measured higher displacement rates on the landslides in pelitic flysch formations compared to the earthflows in the clay shales. Slower mean velocities were measured on most landslides during 2015. We analyse the temporal deformation signal of our eight representative landslides and compare the temporal response to precipitation. We show that earthslides in pelitic flysch formations accelerate faster than earthflows in chaotic clay shales and reach higher velocities, while the kinematic behaviour of the earthflows can be described as rather steady with only minor accelerations. Although we have no detailed pore pressure measurements for the period of interest, the observed behaviour can be explained in our view by the morphological and hydrological characteristics of the different landslide types. On the one hand landslide material and bedrock in the pelitic flysch rocks are more resistant, which is why slope angles are higher in this lithology. On the other hand, landslides in the pelitic flysch formations have often deeper slip surfaces and landslide material is more permeable. This is why long persistent rainfall is necessary to saturate the landslide material and induce pore pressures that are high enough to trigger displacement." @default.
- W2793325595 created "2018-03-29" @default.
- W2793325595 creator A5019304399 @default.
- W2793325595 creator A5027987797 @default.
- W2793325595 creator A5057435336 @default.
- W2793325595 creator A5061946242 @default.
- W2793325595 creator A5088400732 @default.
- W2793325595 date "2018-05-01" @default.
- W2793325595 modified "2023-10-18" @default.
- W2793325595 title "Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR" @default.
- W2793325595 cites W1041470011 @default.
- W2793325595 cites W1549530671 @default.
- W2793325595 cites W1631937297 @default.
- W2793325595 cites W1672745209 @default.
- W2793325595 cites W1963813506 @default.
- W2793325595 cites W1965880416 @default.
- W2793325595 cites W1971700571 @default.
- W2793325595 cites W1972797357 @default.
- W2793325595 cites W1977868171 @default.
- W2793325595 cites W1978902606 @default.
- W2793325595 cites W1995540162 @default.
- W2793325595 cites W1996094605 @default.
- W2793325595 cites W2001278639 @default.
- W2793325595 cites W2005332169 @default.
- W2793325595 cites W2005743522 @default.
- W2793325595 cites W2006907556 @default.
- W2793325595 cites W2013211795 @default.
- W2793325595 cites W2015035635 @default.
- W2793325595 cites W2015804366 @default.
- W2793325595 cites W2017493692 @default.
- W2793325595 cites W2017977879 @default.
- W2793325595 cites W2021517173 @default.
- W2793325595 cites W2022032797 @default.
- W2793325595 cites W2024081693 @default.
- W2793325595 cites W2027617694 @default.
- W2793325595 cites W2030039756 @default.
- W2793325595 cites W2038566498 @default.
- W2793325595 cites W2040617484 @default.
- W2793325595 cites W2040839551 @default.
- W2793325595 cites W2042183912 @default.
- W2793325595 cites W2042865976 @default.
- W2793325595 cites W2043822448 @default.
- W2793325595 cites W2047020077 @default.
- W2793325595 cites W2047029664 @default.
- W2793325595 cites W2049103562 @default.
- W2793325595 cites W2056080147 @default.
- W2793325595 cites W2059496600 @default.
- W2793325595 cites W2063169554 @default.
- W2793325595 cites W2065989874 @default.
- W2793325595 cites W2068886543 @default.
- W2793325595 cites W2075485654 @default.
- W2793325595 cites W2075550759 @default.
- W2793325595 cites W2076884974 @default.
- W2793325595 cites W2077535528 @default.
- W2793325595 cites W2077681798 @default.
- W2793325595 cites W2079965317 @default.
- W2793325595 cites W2083211355 @default.
- W2793325595 cites W2085394607 @default.
- W2793325595 cites W2096288733 @default.
- W2793325595 cites W2110421971 @default.
- W2793325595 cites W2115376312 @default.
- W2793325595 cites W2121773078 @default.
- W2793325595 cites W2123632763 @default.
- W2793325595 cites W2126425139 @default.
- W2793325595 cites W2128513227 @default.
- W2793325595 cites W2131317169 @default.
- W2793325595 cites W2137611024 @default.
- W2793325595 cites W2140285148 @default.
- W2793325595 cites W2141414687 @default.
- W2793325595 cites W2152657318 @default.
- W2793325595 cites W2153457865 @default.
- W2793325595 cites W2156202476 @default.
- W2793325595 cites W2171926753 @default.
- W2793325595 cites W2187369556 @default.
- W2793325595 cites W2188947154 @default.
- W2793325595 cites W2299508540 @default.
- W2793325595 cites W2522629274 @default.
- W2793325595 cites W2556865753 @default.
- W2793325595 cites W2579138762 @default.
- W2793325595 cites W2583639353 @default.
- W2793325595 cites W2611484014 @default.
- W2793325595 cites W2614354585 @default.
- W2793325595 cites W2732499226 @default.
- W2793325595 cites W4233607513 @default.
- W2793325595 doi "https://doi.org/10.1016/j.geomorph.2018.02.020" @default.
- W2793325595 hasPublicationYear "2018" @default.
- W2793325595 type Work @default.
- W2793325595 sameAs 2793325595 @default.
- W2793325595 citedByCount "59" @default.
- W2793325595 countsByYear W27933255952018 @default.
- W2793325595 countsByYear W27933255952019 @default.
- W2793325595 countsByYear W27933255952020 @default.
- W2793325595 countsByYear W27933255952021 @default.
- W2793325595 countsByYear W27933255952022 @default.
- W2793325595 countsByYear W27933255952023 @default.
- W2793325595 crossrefType "journal-article" @default.
- W2793325595 hasAuthorship W2793325595A5019304399 @default.
- W2793325595 hasAuthorship W2793325595A5027987797 @default.