Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793357660> ?p ?o ?g. }
- W2793357660 endingPage "116" @default.
- W2793357660 startingPage "103" @default.
- W2793357660 abstract "This paper discusses the application of convolutional neural networks (CNNs) to minimum variance distortionless response localization schemes. We investigate the direction of arrival estimation problems in noisy and reverberant conditions using a uniform linear array (ULA). CNNs are used to process the multichannel data from the ULA and to improve the data fusion scheme, which is performed in the steered response power computation. CNNs improve the incoherent frequency fusion of the narrowband response power by weighting the components, reducing the deleterious effects of those components affected by artifacts due to noise and reverberation. The use of CNNs avoids the necessity of previously encoding the multichannel data into selected acoustic cues with the advantage to exploit its ability in recognizing geometrical pattern similarity. Experiments with both simulated and real acoustic data demonstrate the superior localization performance of the proposed SRP beamformer with respect to other state-ofthe-art techniques." @default.
- W2793357660 created "2018-03-29" @default.
- W2793357660 creator A5008270926 @default.
- W2793357660 creator A5019634521 @default.
- W2793357660 creator A5078277002 @default.
- W2793357660 date "2018-04-01" @default.
- W2793357660 modified "2023-10-16" @default.
- W2793357660 title "Exploiting CNNs for Improving Acoustic Source Localization in Noisy and Reverberant Conditions" @default.
- W2793357660 cites W1555217905 @default.
- W2793357660 cites W1772191655 @default.
- W2793357660 cites W1985368711 @default.
- W2793357660 cites W1985809919 @default.
- W2793357660 cites W1988935075 @default.
- W2793357660 cites W1995562189 @default.
- W2793357660 cites W2015416518 @default.
- W2793357660 cites W2020107464 @default.
- W2793357660 cites W2030486566 @default.
- W2793357660 cites W2044541911 @default.
- W2793357660 cites W2046317813 @default.
- W2793357660 cites W2060108923 @default.
- W2793357660 cites W2066218102 @default.
- W2793357660 cites W2067584370 @default.
- W2793357660 cites W2087618018 @default.
- W2793357660 cites W2096763807 @default.
- W2793357660 cites W2101926813 @default.
- W2793357660 cites W2103088716 @default.
- W2793357660 cites W2110059230 @default.
- W2793357660 cites W2113468383 @default.
- W2793357660 cites W2113638573 @default.
- W2793357660 cites W2113744809 @default.
- W2793357660 cites W2117678320 @default.
- W2793357660 cites W2121647436 @default.
- W2793357660 cites W2128131274 @default.
- W2793357660 cites W2128970593 @default.
- W2793357660 cites W2130423769 @default.
- W2793357660 cites W2132083787 @default.
- W2793357660 cites W2132605602 @default.
- W2793357660 cites W2136172079 @default.
- W2793357660 cites W2139427956 @default.
- W2793357660 cites W2139625825 @default.
- W2793357660 cites W2141427791 @default.
- W2793357660 cites W2149900846 @default.
- W2793357660 cites W2167589082 @default.
- W2793357660 cites W2167608257 @default.
- W2793357660 cites W2168140505 @default.
- W2793357660 cites W2253429366 @default.
- W2793357660 cites W2278526211 @default.
- W2793357660 cites W2327701832 @default.
- W2793357660 cites W2398042854 @default.
- W2793357660 cites W2400339399 @default.
- W2793357660 cites W2403149086 @default.
- W2793357660 cites W2404176928 @default.
- W2793357660 cites W2406600653 @default.
- W2793357660 cites W2408744528 @default.
- W2793357660 cites W2463465753 @default.
- W2793357660 cites W2466975593 @default.
- W2793357660 cites W2467369931 @default.
- W2793357660 cites W2508659362 @default.
- W2793357660 cites W2515753980 @default.
- W2793357660 cites W2549450702 @default.
- W2793357660 cites W2718052359 @default.
- W2793357660 cites W2997713944 @default.
- W2793357660 cites W3098357269 @default.
- W2793357660 cites W3098670224 @default.
- W2793357660 cites W4230844724 @default.
- W2793357660 doi "https://doi.org/10.1109/tetci.2017.2775237" @default.
- W2793357660 hasPublicationYear "2018" @default.
- W2793357660 type Work @default.
- W2793357660 sameAs 2793357660 @default.
- W2793357660 citedByCount "34" @default.
- W2793357660 countsByYear W27933576602018 @default.
- W2793357660 countsByYear W27933576602019 @default.
- W2793357660 countsByYear W27933576602020 @default.
- W2793357660 countsByYear W27933576602021 @default.
- W2793357660 countsByYear W27933576602022 @default.
- W2793357660 countsByYear W27933576602023 @default.
- W2793357660 crossrefType "journal-article" @default.
- W2793357660 hasAuthorship W2793357660A5008270926 @default.
- W2793357660 hasAuthorship W2793357660A5019634521 @default.
- W2793357660 hasAuthorship W2793357660A5078277002 @default.
- W2793357660 hasBestOaLocation W27933576602 @default.
- W2793357660 hasConcept C11413529 @default.
- W2793357660 hasConcept C115961682 @default.
- W2793357660 hasConcept C121332964 @default.
- W2793357660 hasConcept C153180895 @default.
- W2793357660 hasConcept C154945302 @default.
- W2793357660 hasConcept C172051844 @default.
- W2793357660 hasConcept C183115368 @default.
- W2793357660 hasConcept C21822782 @default.
- W2793357660 hasConcept C24890656 @default.
- W2793357660 hasConcept C2776096036 @default.
- W2793357660 hasConcept C28490314 @default.
- W2793357660 hasConcept C41008148 @default.
- W2793357660 hasConcept C45374587 @default.
- W2793357660 hasConcept C76155785 @default.
- W2793357660 hasConcept C81363708 @default.
- W2793357660 hasConcept C95851461 @default.
- W2793357660 hasConcept C99498987 @default.