Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793358956> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2793358956 endingPage "809" @default.
- W2793358956 startingPage "797" @default.
- W2793358956 abstract "Abstract Emissions from road transport are routinely prepared at the national scale in many countries under different national and international policies, directives and legislation. Scaling down this emission to the smaller geographical area is considered as a top-down approach. Several methods have been previously applied to scaling down emission, however these have often reported inconsistent findings in comparison with emission distribution using a bottom-up approach. Carbon dioxide and particulate matter (smaller than about 2.5 μm) emissions from a national road transport estimation in Ireland were disaggregated among four counties in the Greater Dublin Area and subsequently distributed at a finer spatial scale (0.5 × 0.5 km2). Spatial coverage of the proxy variables, spatial weight distribution and appropriate representation of the fleet characteristics were identified as main sources of difference in distributed spatial emissions between top-down and bottom-up approaches. The first two issues were addressed in this paper by predicting missing or absent traffic volume from limited datasets, and the later was addressed by considering the fleet and mileage data from national annual vehicle test data at county level. A neural network model was applied to predict traffic volume which showed a 51% precision in prediction performance. Emission distribution was also performed for comparison purposes using a more conventional road density-based approach, where a correlation analysis showed an inconsistency between the two approaches. The results of this study highlighted that if the fleet characteristics at county level were not considered, the estimated emission would be different by −1.6 to −8.6% (Carbon dioxide) and −12.6 to 0.03% (Particulate matter) for passenger cars and −3.57–13.6% (Carbon dioxide) and −0.054–16.8% (Particulate matter) for light and heavy duty vehicles, depending on the counties in question. This study revealed that a share of 22.6% and 21.1% of national carbon dioxide and particulate matter emission occurred in Dublin County alone, and Dublin city was attributed to approximately 10.5% carbon dioxide and 9.8% particulate matter of the national total. The particulate matter in Dublin County was 14.3–22.4% higher than surrounding counties, and carbon dioxide emissions in Dublin city were two times higher than that of the towns and urban areas in the surrounding three counties. This study provides a combination of methods for producing finer scale spatial estimation of emission to facilitate abatement strategies and mitigation action plans at county and municipality level for the reduction of emission, better air quality and climate. The study highlights the necessity of reliable spatial distribution methods for assigning emission at a finer scale." @default.
- W2793358956 created "2018-03-29" @default.
- W2793358956 creator A5032336603 @default.
- W2793358956 creator A5036573305 @default.
- W2793358956 creator A5063388191 @default.
- W2793358956 creator A5069797650 @default.
- W2793358956 date "2018-05-01" @default.
- W2793358956 modified "2023-09-26" @default.
- W2793358956 title "Downscaling national road transport emission to street level: A case study in Dublin, Ireland" @default.
- W2793358956 cites W1995849344 @default.
- W2793358956 cites W2031522748 @default.
- W2793358956 cites W2042122857 @default.
- W2793358956 cites W2069062559 @default.
- W2793358956 cites W2115894036 @default.
- W2793358956 cites W2159808434 @default.
- W2793358956 cites W2409483074 @default.
- W2793358956 cites W2525880398 @default.
- W2793358956 cites W2562350616 @default.
- W2793358956 cites W2580569747 @default.
- W2793358956 cites W2584614261 @default.
- W2793358956 cites W2587702368 @default.
- W2793358956 cites W2587879782 @default.
- W2793358956 cites W2740430252 @default.
- W2793358956 cites W42016511 @default.
- W2793358956 cites W892009978 @default.
- W2793358956 doi "https://doi.org/10.1016/j.jclepro.2018.02.206" @default.
- W2793358956 hasPublicationYear "2018" @default.
- W2793358956 type Work @default.
- W2793358956 sameAs 2793358956 @default.
- W2793358956 citedByCount "19" @default.
- W2793358956 countsByYear W27933589562019 @default.
- W2793358956 countsByYear W27933589562020 @default.
- W2793358956 countsByYear W27933589562021 @default.
- W2793358956 countsByYear W27933589562022 @default.
- W2793358956 countsByYear W27933589562023 @default.
- W2793358956 crossrefType "journal-article" @default.
- W2793358956 hasAuthorship W2793358956A5032336603 @default.
- W2793358956 hasAuthorship W2793358956A5036573305 @default.
- W2793358956 hasAuthorship W2793358956A5063388191 @default.
- W2793358956 hasAuthorship W2793358956A5069797650 @default.
- W2793358956 hasConcept C107054158 @default.
- W2793358956 hasConcept C127413603 @default.
- W2793358956 hasConcept C148383697 @default.
- W2793358956 hasConcept C153294291 @default.
- W2793358956 hasConcept C205649164 @default.
- W2793358956 hasConcept C22212356 @default.
- W2793358956 hasConcept C2985695025 @default.
- W2793358956 hasConcept C3019222255 @default.
- W2793358956 hasConcept C41156917 @default.
- W2793358956 hasConceptScore W2793358956C107054158 @default.
- W2793358956 hasConceptScore W2793358956C127413603 @default.
- W2793358956 hasConceptScore W2793358956C148383697 @default.
- W2793358956 hasConceptScore W2793358956C153294291 @default.
- W2793358956 hasConceptScore W2793358956C205649164 @default.
- W2793358956 hasConceptScore W2793358956C22212356 @default.
- W2793358956 hasConceptScore W2793358956C2985695025 @default.
- W2793358956 hasConceptScore W2793358956C3019222255 @default.
- W2793358956 hasConceptScore W2793358956C41156917 @default.
- W2793358956 hasFunder F4320320835 @default.
- W2793358956 hasLocation W27933589561 @default.
- W2793358956 hasOpenAccess W2793358956 @default.
- W2793358956 hasPrimaryLocation W27933589561 @default.
- W2793358956 hasRelatedWork W2001288005 @default.
- W2793358956 hasRelatedWork W2050700580 @default.
- W2793358956 hasRelatedWork W2357113166 @default.
- W2793358956 hasRelatedWork W2567664930 @default.
- W2793358956 hasRelatedWork W2611940832 @default.
- W2793358956 hasRelatedWork W4210289928 @default.
- W2793358956 hasRelatedWork W4312608157 @default.
- W2793358956 hasRelatedWork W566288643 @default.
- W2793358956 hasRelatedWork W573733125 @default.
- W2793358956 hasRelatedWork W1674017242 @default.
- W2793358956 hasVolume "183" @default.
- W2793358956 isParatext "false" @default.
- W2793358956 isRetracted "false" @default.
- W2793358956 magId "2793358956" @default.
- W2793358956 workType "article" @default.