Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793364040> ?p ?o ?g. }
- W2793364040 endingPage "56" @default.
- W2793364040 startingPage "49" @default.
- W2793364040 abstract "Modeling potential domino scenarios in process plants includes the prediction of the most probable sequence of events and the calculation of respective probabilities, so-called escalation probabilities, so that appropriate prevention and mitigation safety measures can be devised. Domino effect modeling, however, is very challenging mainly due to uncertainties involved in estimation of escalation probabilities (parameter uncertainty) and prediction of the sequence of events during a domino effect (model uncertainty). In the present study, a methodology based on dynamic Bayesian network is developed for identification of the most likely sequence of events in domino scenarios while accounting for model uncertainty. Verifying the accuracy of the methodology based on a comparison with previous studies, the methodology is applied to model single-primary-event and multiple-primary-event domino scenarios in process plants." @default.
- W2793364040 created "2018-03-29" @default.
- W2793364040 creator A5006264748 @default.
- W2793364040 creator A5012854945 @default.
- W2793364040 creator A5047303870 @default.
- W2793364040 creator A5047998865 @default.
- W2793364040 creator A5086790937 @default.
- W2793364040 date "2018-07-01" @default.
- W2793364040 modified "2023-09-30" @default.
- W2793364040 title "How to address model uncertainty in the escalation of domino effects?" @default.
- W2793364040 cites W100710627 @default.
- W2793364040 cites W1940286691 @default.
- W2793364040 cites W1966893154 @default.
- W2793364040 cites W1974075885 @default.
- W2793364040 cites W1974533806 @default.
- W2793364040 cites W1996311507 @default.
- W2793364040 cites W1996319168 @default.
- W2793364040 cites W2013367462 @default.
- W2793364040 cites W2017071447 @default.
- W2793364040 cites W2023882199 @default.
- W2793364040 cites W2027543702 @default.
- W2793364040 cites W2036110507 @default.
- W2793364040 cites W2038027235 @default.
- W2793364040 cites W2042961929 @default.
- W2793364040 cites W2047566635 @default.
- W2793364040 cites W2054741939 @default.
- W2793364040 cites W2056944867 @default.
- W2793364040 cites W2061382057 @default.
- W2793364040 cites W2076027625 @default.
- W2793364040 cites W2234018401 @default.
- W2793364040 cites W2298971542 @default.
- W2793364040 cites W2577518654 @default.
- W2793364040 doi "https://doi.org/10.1016/j.jlp.2018.03.001" @default.
- W2793364040 hasPublicationYear "2018" @default.
- W2793364040 type Work @default.
- W2793364040 sameAs 2793364040 @default.
- W2793364040 citedByCount "32" @default.
- W2793364040 countsByYear W27933640402019 @default.
- W2793364040 countsByYear W27933640402020 @default.
- W2793364040 countsByYear W27933640402021 @default.
- W2793364040 countsByYear W27933640402022 @default.
- W2793364040 countsByYear W27933640402023 @default.
- W2793364040 crossrefType "journal-article" @default.
- W2793364040 hasAuthorship W2793364040A5006264748 @default.
- W2793364040 hasAuthorship W2793364040A5012854945 @default.
- W2793364040 hasAuthorship W2793364040A5047303870 @default.
- W2793364040 hasAuthorship W2793364040A5047998865 @default.
- W2793364040 hasAuthorship W2793364040A5086790937 @default.
- W2793364040 hasBestOaLocation W27933640402 @default.
- W2793364040 hasConcept C107094494 @default.
- W2793364040 hasConcept C107673813 @default.
- W2793364040 hasConcept C111919701 @default.
- W2793364040 hasConcept C116834253 @default.
- W2793364040 hasConcept C119857082 @default.
- W2793364040 hasConcept C121332964 @default.
- W2793364040 hasConcept C124101348 @default.
- W2793364040 hasConcept C127413603 @default.
- W2793364040 hasConcept C154945302 @default.
- W2793364040 hasConcept C155223936 @default.
- W2793364040 hasConcept C160234255 @default.
- W2793364040 hasConcept C161790260 @default.
- W2793364040 hasConcept C185544564 @default.
- W2793364040 hasConcept C185592680 @default.
- W2793364040 hasConcept C200601418 @default.
- W2793364040 hasConcept C2776416436 @default.
- W2793364040 hasConcept C2778112365 @default.
- W2793364040 hasConcept C2779662365 @default.
- W2793364040 hasConcept C33724603 @default.
- W2793364040 hasConcept C41008148 @default.
- W2793364040 hasConcept C42475967 @default.
- W2793364040 hasConcept C54355233 @default.
- W2793364040 hasConcept C55493867 @default.
- W2793364040 hasConcept C59822182 @default.
- W2793364040 hasConcept C62520636 @default.
- W2793364040 hasConcept C65898831 @default.
- W2793364040 hasConcept C86803240 @default.
- W2793364040 hasConcept C98045186 @default.
- W2793364040 hasConceptScore W2793364040C107094494 @default.
- W2793364040 hasConceptScore W2793364040C107673813 @default.
- W2793364040 hasConceptScore W2793364040C111919701 @default.
- W2793364040 hasConceptScore W2793364040C116834253 @default.
- W2793364040 hasConceptScore W2793364040C119857082 @default.
- W2793364040 hasConceptScore W2793364040C121332964 @default.
- W2793364040 hasConceptScore W2793364040C124101348 @default.
- W2793364040 hasConceptScore W2793364040C127413603 @default.
- W2793364040 hasConceptScore W2793364040C154945302 @default.
- W2793364040 hasConceptScore W2793364040C155223936 @default.
- W2793364040 hasConceptScore W2793364040C160234255 @default.
- W2793364040 hasConceptScore W2793364040C161790260 @default.
- W2793364040 hasConceptScore W2793364040C185544564 @default.
- W2793364040 hasConceptScore W2793364040C185592680 @default.
- W2793364040 hasConceptScore W2793364040C200601418 @default.
- W2793364040 hasConceptScore W2793364040C2776416436 @default.
- W2793364040 hasConceptScore W2793364040C2778112365 @default.
- W2793364040 hasConceptScore W2793364040C2779662365 @default.
- W2793364040 hasConceptScore W2793364040C33724603 @default.
- W2793364040 hasConceptScore W2793364040C41008148 @default.
- W2793364040 hasConceptScore W2793364040C42475967 @default.