Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793463287> ?p ?o ?g. }
- W2793463287 endingPage "5379" @default.
- W2793463287 startingPage "5366" @default.
- W2793463287 abstract "Negative correlation learning (NCL) is an ensemble learning algorithm that introduces a correlation penalty term to the cost function of each individual ensemble member. Each ensemble member minimizes its mean square error and its error correlation with the rest of the ensemble. This paper analyzes NCL and reveals that adopting a negative correlation term for unlabeled data is beneficial to improving the model performance in the semisupervised learning (SSL) setting. We then propose a novel SSL algorithm, Semisupervised NCL (SemiNCL) algorithm. The algorithm considers the negative correlation terms for both labeled and unlabeled data for the semisupervised problems. In order to reduce the computational and memory complexity, an accelerated SemiNCL is derived from the distributed least square algorithm. In addition, we have derived a bound for two parameters in SemiNCL based on an analysis of the Hessian matrix of the error function. The new algorithm is evaluated by extensive experiments with various ratios of labeled and unlabeled training data. Comparisons with other state-of-the-art supervised and semisupervised algorithms confirm that SemiNCL achieves the best overall performance." @default.
- W2793463287 created "2018-03-29" @default.
- W2793463287 creator A5002978395 @default.
- W2793463287 creator A5017769188 @default.
- W2793463287 date "2018-11-01" @default.
- W2793463287 modified "2023-10-14" @default.
- W2793463287 title "Semisupervised Negative Correlation Learning" @default.
- W2793463287 cites W1479807131 @default.
- W2793463287 cites W1910104793 @default.
- W2793463287 cites W1998565453 @default.
- W2793463287 cites W2003684104 @default.
- W2793463287 cites W2004641158 @default.
- W2793463287 cites W2012844989 @default.
- W2793463287 cites W2039609561 @default.
- W2793463287 cites W2042184006 @default.
- W2793463287 cites W2044774029 @default.
- W2793463287 cites W2048679005 @default.
- W2793463287 cites W2051812123 @default.
- W2793463287 cites W2061119986 @default.
- W2793463287 cites W2061554433 @default.
- W2793463287 cites W2079057609 @default.
- W2793463287 cites W2098136027 @default.
- W2793463287 cites W2104664243 @default.
- W2793463287 cites W2106390255 @default.
- W2793463287 cites W2111346607 @default.
- W2793463287 cites W2116374865 @default.
- W2793463287 cites W2122892819 @default.
- W2793463287 cites W2129648589 @default.
- W2793463287 cites W2137450504 @default.
- W2793463287 cites W2140229565 @default.
- W2793463287 cites W2140676093 @default.
- W2793463287 cites W2145376937 @default.
- W2793463287 cites W2145833756 @default.
- W2793463287 cites W2147234763 @default.
- W2793463287 cites W2149489749 @default.
- W2793463287 cites W2153290280 @default.
- W2793463287 cites W2155399784 @default.
- W2793463287 cites W2160338239 @default.
- W2793463287 cites W2167055186 @default.
- W2793463287 cites W2167663812 @default.
- W2793463287 cites W2570107029 @default.
- W2793463287 cites W2752794725 @default.
- W2793463287 cites W2768275492 @default.
- W2793463287 cites W2911964244 @default.
- W2793463287 cites W4294541781 @default.
- W2793463287 doi "https://doi.org/10.1109/tnnls.2017.2784814" @default.
- W2793463287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994737" @default.
- W2793463287 hasPublicationYear "2018" @default.
- W2793463287 type Work @default.
- W2793463287 sameAs 2793463287 @default.
- W2793463287 citedByCount "12" @default.
- W2793463287 countsByYear W27934632872019 @default.
- W2793463287 countsByYear W27934632872020 @default.
- W2793463287 countsByYear W27934632872021 @default.
- W2793463287 countsByYear W27934632872022 @default.
- W2793463287 countsByYear W27934632872023 @default.
- W2793463287 crossrefType "journal-article" @default.
- W2793463287 hasAuthorship W2793463287A5002978395 @default.
- W2793463287 hasAuthorship W2793463287A5017769188 @default.
- W2793463287 hasConcept C105795698 @default.
- W2793463287 hasConcept C11413529 @default.
- W2793463287 hasConcept C117220453 @default.
- W2793463287 hasConcept C119857082 @default.
- W2793463287 hasConcept C121332964 @default.
- W2793463287 hasConcept C139945424 @default.
- W2793463287 hasConcept C14036430 @default.
- W2793463287 hasConcept C153180895 @default.
- W2793463287 hasConcept C154945302 @default.
- W2793463287 hasConcept C167085575 @default.
- W2793463287 hasConcept C203616005 @default.
- W2793463287 hasConcept C2524010 @default.
- W2793463287 hasConcept C28826006 @default.
- W2793463287 hasConcept C33923547 @default.
- W2793463287 hasConcept C41008148 @default.
- W2793463287 hasConcept C45942800 @default.
- W2793463287 hasConcept C61797465 @default.
- W2793463287 hasConcept C62520636 @default.
- W2793463287 hasConcept C78458016 @default.
- W2793463287 hasConcept C86803240 @default.
- W2793463287 hasConceptScore W2793463287C105795698 @default.
- W2793463287 hasConceptScore W2793463287C11413529 @default.
- W2793463287 hasConceptScore W2793463287C117220453 @default.
- W2793463287 hasConceptScore W2793463287C119857082 @default.
- W2793463287 hasConceptScore W2793463287C121332964 @default.
- W2793463287 hasConceptScore W2793463287C139945424 @default.
- W2793463287 hasConceptScore W2793463287C14036430 @default.
- W2793463287 hasConceptScore W2793463287C153180895 @default.
- W2793463287 hasConceptScore W2793463287C154945302 @default.
- W2793463287 hasConceptScore W2793463287C167085575 @default.
- W2793463287 hasConceptScore W2793463287C203616005 @default.
- W2793463287 hasConceptScore W2793463287C2524010 @default.
- W2793463287 hasConceptScore W2793463287C28826006 @default.
- W2793463287 hasConceptScore W2793463287C33923547 @default.
- W2793463287 hasConceptScore W2793463287C41008148 @default.
- W2793463287 hasConceptScore W2793463287C45942800 @default.
- W2793463287 hasConceptScore W2793463287C61797465 @default.
- W2793463287 hasConceptScore W2793463287C62520636 @default.
- W2793463287 hasConceptScore W2793463287C78458016 @default.