Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793469028> ?p ?o ?g. }
- W2793469028 endingPage "816" @default.
- W2793469028 startingPage "793" @default.
- W2793469028 abstract "Buildings, as impervious surfaces, are an important component of total impervious surface areas that drive urban stormwater response to intense rainfall events. Most stormwater models that use percent impervious area (PIA) are spatially lumped models and do not require precise locations of building roofs, as in other applications of building maps, but do require accurate estimates of total impervious areas within the geographic units of observation (e.g. city blocks or sub-watershed units). Two-dimensional mapping of buildings from aerial imagery requires laborious efforts from image analysts or elaborate image analysis techniques using high spatial resolution imagery. Moreover, large uncertainties exist where tall, dense vegetation obscures the structures. Analyzing LiDAR point-cloud data, however, can distinguish buildings from vegetation canopy and facilitate the mapping of buildings. This paper presents a new building extraction approach that is based on and optimized for estimating building impervious areas (BIA) for hydrologic purposes and can be used with standard GIS software to identify building roofs under tall, thick canopy. Accuracy assessment methods are presented that can optimize model performance for modeling BIA within the geographic units of observation for hydrologic applications. The Building Extraction from LiDAR Last Returns (BELLR) model, a 2.5D rule-based GIS model, uses a non-spatial, local vertical difference filter (VDF) on LiDAR point-cloud data to automatically identify and map building footprints. The model includes an absolute difference in elevation (AdE) parameter in the VDF that compares the difference between mean and modal elevations of last-returns in each cell.The BELLR model is calibrated for an extensive inner-city, highly urbanized small watershed in Columbia, South Carolina, USA that is covered by tall, thick vegetation canopy that obscures many buildings. The calibration of BELLR used a set of building locations compiled by photo-analysts, and validation used independent building reference data. The model is applied to two residential neighborhoods, one of which is a residential area within the primary watershed and the other is a younger suburban neighborhood with a less-well developed tree canopy used as a validation site. Performance results indicate that the BELLR model is highly sensitive to concavity in the lasboundary tool of LAStools® and those settings are highly site specific. The model is also sensitive to cell size and the AdE threshold values. However, properly calibrated the BIA for the two residential sites could be estimated within 1% error for optimized experiments.To examine results in a hydrologic application, the BELLR estimated BIAs were tested using two different types of hydrologic models to compare BELLR results with results using the National Land Cover Database (NLCD) 2011 Percent Developed Imperviousness data. The BELLR BIA values provide more accurate results than the use of the 2011 NLCD PIA data in both models. The VDF developed in this study to map buildings could be applied to LiDAR point-cloud filtering algorithms for feature extraction in machine learning or mapping other planar surfaces in more broad-based land-cover classifications." @default.
- W2793469028 created "2018-03-29" @default.
- W2793469028 creator A5028997231 @default.
- W2793469028 creator A5067982699 @default.
- W2793469028 creator A5071778860 @default.
- W2793469028 date "2018-03-22" @default.
- W2793469028 modified "2023-09-26" @default.
- W2793469028 title "An automated algorithm for mapping building impervious areas from airborne LiDAR point-cloud data for flood hydrology" @default.
- W2793469028 cites W1549241827 @default.
- W2793469028 cites W1554217546 @default.
- W2793469028 cites W1556375020 @default.
- W2793469028 cites W1973747196 @default.
- W2793469028 cites W1981565399 @default.
- W2793469028 cites W2002967471 @default.
- W2793469028 cites W2003250948 @default.
- W2793469028 cites W2005905734 @default.
- W2793469028 cites W2008477163 @default.
- W2793469028 cites W2013305910 @default.
- W2793469028 cites W2024878820 @default.
- W2793469028 cites W2029625183 @default.
- W2793469028 cites W2042575120 @default.
- W2793469028 cites W2051913096 @default.
- W2793469028 cites W2056771812 @default.
- W2793469028 cites W2058998445 @default.
- W2793469028 cites W2073699178 @default.
- W2793469028 cites W2075875340 @default.
- W2793469028 cites W2081027240 @default.
- W2793469028 cites W2092068767 @default.
- W2793469028 cites W2104803300 @default.
- W2793469028 cites W2107692142 @default.
- W2793469028 cites W2115758154 @default.
- W2793469028 cites W2124474023 @default.
- W2793469028 cites W2134962551 @default.
- W2793469028 cites W2136651098 @default.
- W2793469028 cites W2147406638 @default.
- W2793469028 cites W2150089019 @default.
- W2793469028 cites W2150942787 @default.
- W2793469028 cites W2159301975 @default.
- W2793469028 cites W2159957997 @default.
- W2793469028 cites W2197852308 @default.
- W2793469028 cites W2273664412 @default.
- W2793469028 cites W2285095299 @default.
- W2793469028 cites W2315184042 @default.
- W2793469028 cites W2420455963 @default.
- W2793469028 cites W2470564009 @default.
- W2793469028 cites W2560421846 @default.
- W2793469028 cites W2588878865 @default.
- W2793469028 cites W2592461288 @default.
- W2793469028 cites W2602540228 @default.
- W2793469028 cites W2742692613 @default.
- W2793469028 cites W4233311745 @default.
- W2793469028 cites W99472775 @default.
- W2793469028 doi "https://doi.org/10.1080/15481603.2018.1452588" @default.
- W2793469028 hasPublicationYear "2018" @default.
- W2793469028 type Work @default.
- W2793469028 sameAs 2793469028 @default.
- W2793469028 citedByCount "11" @default.
- W2793469028 countsByYear W27934690282018 @default.
- W2793469028 countsByYear W27934690282019 @default.
- W2793469028 countsByYear W27934690282020 @default.
- W2793469028 countsByYear W27934690282021 @default.
- W2793469028 countsByYear W27934690282022 @default.
- W2793469028 countsByYear W27934690282023 @default.
- W2793469028 crossrefType "journal-article" @default.
- W2793469028 hasAuthorship W2793469028A5028997231 @default.
- W2793469028 hasAuthorship W2793469028A5067982699 @default.
- W2793469028 hasAuthorship W2793469028A5071778860 @default.
- W2793469028 hasConcept C119857082 @default.
- W2793469028 hasConcept C127313418 @default.
- W2793469028 hasConcept C131979681 @default.
- W2793469028 hasConcept C150547873 @default.
- W2793469028 hasConcept C153294291 @default.
- W2793469028 hasConcept C166957645 @default.
- W2793469028 hasConcept C173051318 @default.
- W2793469028 hasConcept C181843262 @default.
- W2793469028 hasConcept C187320778 @default.
- W2793469028 hasConcept C18903297 @default.
- W2793469028 hasConcept C205649164 @default.
- W2793469028 hasConcept C2668921 @default.
- W2793469028 hasConcept C31972630 @default.
- W2793469028 hasConcept C39432304 @default.
- W2793469028 hasConcept C41008148 @default.
- W2793469028 hasConcept C41856607 @default.
- W2793469028 hasConcept C50477045 @default.
- W2793469028 hasConcept C51399673 @default.
- W2793469028 hasConcept C62649853 @default.
- W2793469028 hasConcept C74256435 @default.
- W2793469028 hasConcept C76886044 @default.
- W2793469028 hasConcept C86803240 @default.
- W2793469028 hasConceptScore W2793469028C119857082 @default.
- W2793469028 hasConceptScore W2793469028C127313418 @default.
- W2793469028 hasConceptScore W2793469028C131979681 @default.
- W2793469028 hasConceptScore W2793469028C150547873 @default.
- W2793469028 hasConceptScore W2793469028C153294291 @default.
- W2793469028 hasConceptScore W2793469028C166957645 @default.
- W2793469028 hasConceptScore W2793469028C173051318 @default.
- W2793469028 hasConceptScore W2793469028C181843262 @default.
- W2793469028 hasConceptScore W2793469028C187320778 @default.