Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793485455> ?p ?o ?g. }
- W2793485455 endingPage "2288" @default.
- W2793485455 startingPage "2278" @default.
- W2793485455 abstract "Background: Biomarkers predicting response to bevacizumab in breast cancer are still missing. Since epigenetic modifications can contribute to an aberrant regulation of angiogenesis and treatment resistance, we investigated the influence of DNA methylation patterns on bevacizumab efficacy. Methods: Genome-wide methylation profiling using the Illumina Infinium HumanMethylation450 BeadChip was performed in archival FFPE specimens of 36 patients with HER2-negative metastatic breast cancer treated with chemotherapy in combination with bevacizumab as first-line therapy (learning set). Based on objective response and progression-free survival (PFS) and considering ER expression, patients were divided in responders (R) and non-responders (NR). Significantly differentially methylated gene loci (CpGs) with a strong change in methylation levels (Δβ>0.15 or Δβ<-0.15) between R and NR were identified and further investigated in 80 bevacizumab-treated breast cancer patients (optimization set) and in 15 patients treated with chemotherapy alone (control set) using targeted deep amplicon bisulfite sequencing. Methylated gene loci were considered predictive if there was a significant association with outcome (PFS) in the optimization set but not in the control set using Spearman rank correlation, Cox regression, and logrank test. Results: Differentially methylated loci in 48 genes were identified, allowing a good separation between R and NR (odds ratio (OR) 101, p<0.0001). Methylation of at least one cytosine in 26 gene-regions was significantly associated with progression-free survival (PFS) in the optimization set, but not in the control set. Using information from the optimization set, the panel was reduced to a 9-gene signature, which could divide patients from the learning set into 2 clusters, thereby predicting response with an OR of 40 (p<0.001) and an AUC of 0.91 (LOOCV). A further restricted 3-gene methylation model showed a significant association of predicted responders with longer PFS in the learning and optimization set even in multivariate analysis with an excellent and good separation of R and NR with AUC=0.94 and AUC=0.86, respectively. Conclusion: Both a 9-gene and 3-gene methylation signature can discriminate between R and NR to a bevacizumab-based therapy in MBC and could help identify patients deriving greater benefit from bevacizumab." @default.
- W2793485455 created "2018-03-29" @default.
- W2793485455 creator A5000363344 @default.
- W2793485455 creator A5028712491 @default.
- W2793485455 creator A5031604530 @default.
- W2793485455 creator A5036026407 @default.
- W2793485455 creator A5039762705 @default.
- W2793485455 creator A5039994927 @default.
- W2793485455 creator A5041163911 @default.
- W2793485455 creator A5052246323 @default.
- W2793485455 creator A5054103967 @default.
- W2793485455 creator A5072706720 @default.
- W2793485455 creator A5082631402 @default.
- W2793485455 date "2018-01-01" @default.
- W2793485455 modified "2023-09-25" @default.
- W2793485455 title "DNA Methylation Signatures Predicting Bevacizumab Efficacy in Metastatic Breast Cancer" @default.
- W2793485455 cites W1603797292 @default.
- W2793485455 cites W1964278453 @default.
- W2793485455 cites W1982986493 @default.
- W2793485455 cites W1985693984 @default.
- W2793485455 cites W2019801860 @default.
- W2793485455 cites W2021769991 @default.
- W2793485455 cites W2050112556 @default.
- W2793485455 cites W2075432652 @default.
- W2793485455 cites W2095545927 @default.
- W2793485455 cites W2096099115 @default.
- W2793485455 cites W2098276344 @default.
- W2793485455 cites W2099824657 @default.
- W2793485455 cites W2103563357 @default.
- W2793485455 cites W2109491042 @default.
- W2793485455 cites W2111568097 @default.
- W2793485455 cites W2113652101 @default.
- W2793485455 cites W2114159573 @default.
- W2793485455 cites W2125651014 @default.
- W2793485455 cites W2126275851 @default.
- W2793485455 cites W2129220985 @default.
- W2793485455 cites W2131705241 @default.
- W2793485455 cites W2131994307 @default.
- W2793485455 cites W2134087142 @default.
- W2793485455 cites W2134119471 @default.
- W2793485455 cites W2135947340 @default.
- W2793485455 cites W2136895197 @default.
- W2793485455 cites W2138666899 @default.
- W2793485455 cites W2142980017 @default.
- W2793485455 cites W2144159497 @default.
- W2793485455 cites W2153982924 @default.
- W2793485455 cites W2155014087 @default.
- W2793485455 cites W2161717621 @default.
- W2793485455 cites W2166393012 @default.
- W2793485455 cites W2167224460 @default.
- W2793485455 cites W2168236082 @default.
- W2793485455 cites W2406965650 @default.
- W2793485455 cites W2409510549 @default.
- W2793485455 cites W2495746023 @default.
- W2793485455 cites W2510561646 @default.
- W2793485455 cites W2517421365 @default.
- W2793485455 cites W2522181709 @default.
- W2793485455 cites W2547100318 @default.
- W2793485455 cites W2565278636 @default.
- W2793485455 cites W2581499940 @default.
- W2793485455 cites W2588456342 @default.
- W2793485455 cites W2607788676 @default.
- W2793485455 doi "https://doi.org/10.7150/thno.23544" @default.
- W2793485455 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5928889" @default.
- W2793485455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29721079" @default.
- W2793485455 hasPublicationYear "2018" @default.
- W2793485455 type Work @default.
- W2793485455 sameAs 2793485455 @default.
- W2793485455 citedByCount "23" @default.
- W2793485455 countsByYear W27934854552019 @default.
- W2793485455 countsByYear W27934854552020 @default.
- W2793485455 countsByYear W27934854552021 @default.
- W2793485455 countsByYear W27934854552022 @default.
- W2793485455 countsByYear W27934854552023 @default.
- W2793485455 crossrefType "journal-article" @default.
- W2793485455 hasAuthorship W2793485455A5000363344 @default.
- W2793485455 hasAuthorship W2793485455A5028712491 @default.
- W2793485455 hasAuthorship W2793485455A5031604530 @default.
- W2793485455 hasAuthorship W2793485455A5036026407 @default.
- W2793485455 hasAuthorship W2793485455A5039762705 @default.
- W2793485455 hasAuthorship W2793485455A5039994927 @default.
- W2793485455 hasAuthorship W2793485455A5041163911 @default.
- W2793485455 hasAuthorship W2793485455A5052246323 @default.
- W2793485455 hasAuthorship W2793485455A5054103967 @default.
- W2793485455 hasAuthorship W2793485455A5072706720 @default.
- W2793485455 hasAuthorship W2793485455A5082631402 @default.
- W2793485455 hasBestOaLocation W27934854551 @default.
- W2793485455 hasConcept C104317684 @default.
- W2793485455 hasConcept C121608353 @default.
- W2793485455 hasConcept C126322002 @default.
- W2793485455 hasConcept C143998085 @default.
- W2793485455 hasConcept C150194340 @default.
- W2793485455 hasConcept C189235521 @default.
- W2793485455 hasConcept C190727270 @default.
- W2793485455 hasConcept C2775930923 @default.
- W2793485455 hasConcept C2776694085 @default.
- W2793485455 hasConcept C2777802072 @default.
- W2793485455 hasConcept C33288867 @default.