Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793494562> ?p ?o ?g. }
- W2793494562 endingPage "1840011" @default.
- W2793494562 startingPage "1840011" @default.
- W2793494562 abstract "A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site." @default.
- W2793494562 created "2018-03-29" @default.
- W2793494562 creator A5002764087 @default.
- W2793494562 creator A5004199309 @default.
- W2793494562 creator A5015526359 @default.
- W2793494562 creator A5038374417 @default.
- W2793494562 creator A5041349325 @default.
- W2793494562 creator A5055328507 @default.
- W2793494562 creator A5066364323 @default.
- W2793494562 creator A5087220654 @default.
- W2793494562 date "2018-04-01" @default.
- W2793494562 modified "2023-10-14" @default.
- W2793494562 title "SIGNAL-NOISE IDENTIFICATION OF MAGNETOTELLURIC SIGNALS USING FRACTAL-ENTROPY AND CLUSTERING ALGORITHM FOR TARGETED DE-NOISING" @default.
- W2793494562 cites W1585383936 @default.
- W2793494562 cites W1965239040 @default.
- W2793494562 cites W1986872133 @default.
- W2793494562 cites W1992060948 @default.
- W2793494562 cites W1994233698 @default.
- W2793494562 cites W1994565590 @default.
- W2793494562 cites W2010285710 @default.
- W2793494562 cites W2012742622 @default.
- W2793494562 cites W2025297315 @default.
- W2793494562 cites W2031377725 @default.
- W2793494562 cites W2031931664 @default.
- W2793494562 cites W2043276204 @default.
- W2793494562 cites W2048522269 @default.
- W2793494562 cites W2064263898 @default.
- W2793494562 cites W2092114590 @default.
- W2793494562 cites W2099076672 @default.
- W2793494562 cites W2106952845 @default.
- W2793494562 cites W2110040548 @default.
- W2793494562 cites W2156447271 @default.
- W2793494562 cites W2161522250 @default.
- W2793494562 cites W2165140615 @default.
- W2793494562 cites W2207499834 @default.
- W2793494562 cites W2513899794 @default.
- W2793494562 cites W2530800537 @default.
- W2793494562 cites W2559488099 @default.
- W2793494562 cites W2605057828 @default.
- W2793494562 cites W2725897202 @default.
- W2793494562 cites W3110810659 @default.
- W2793494562 doi "https://doi.org/10.1142/s0218348x1840011x" @default.
- W2793494562 hasPublicationYear "2018" @default.
- W2793494562 type Work @default.
- W2793494562 sameAs 2793494562 @default.
- W2793494562 citedByCount "18" @default.
- W2793494562 countsByYear W27934945622018 @default.
- W2793494562 countsByYear W27934945622019 @default.
- W2793494562 countsByYear W27934945622020 @default.
- W2793494562 countsByYear W27934945622021 @default.
- W2793494562 countsByYear W27934945622022 @default.
- W2793494562 countsByYear W27934945622023 @default.
- W2793494562 crossrefType "journal-article" @default.
- W2793494562 hasAuthorship W2793494562A5002764087 @default.
- W2793494562 hasAuthorship W2793494562A5004199309 @default.
- W2793494562 hasAuthorship W2793494562A5015526359 @default.
- W2793494562 hasAuthorship W2793494562A5038374417 @default.
- W2793494562 hasAuthorship W2793494562A5041349325 @default.
- W2793494562 hasAuthorship W2793494562A5055328507 @default.
- W2793494562 hasAuthorship W2793494562A5066364323 @default.
- W2793494562 hasAuthorship W2793494562A5087220654 @default.
- W2793494562 hasBestOaLocation W27934945621 @default.
- W2793494562 hasConcept C106301342 @default.
- W2793494562 hasConcept C11413529 @default.
- W2793494562 hasConcept C115961682 @default.
- W2793494562 hasConcept C121332964 @default.
- W2793494562 hasConcept C127162648 @default.
- W2793494562 hasConcept C134306372 @default.
- W2793494562 hasConcept C153180895 @default.
- W2793494562 hasConcept C154945302 @default.
- W2793494562 hasConcept C199360897 @default.
- W2793494562 hasConcept C26546657 @default.
- W2793494562 hasConcept C2779843651 @default.
- W2793494562 hasConcept C32022120 @default.
- W2793494562 hasConcept C33923547 @default.
- W2793494562 hasConcept C40636538 @default.
- W2793494562 hasConcept C41008148 @default.
- W2793494562 hasConcept C62520636 @default.
- W2793494562 hasConcept C73555534 @default.
- W2793494562 hasConcept C76155785 @default.
- W2793494562 hasConcept C99498987 @default.
- W2793494562 hasConceptScore W2793494562C106301342 @default.
- W2793494562 hasConceptScore W2793494562C11413529 @default.
- W2793494562 hasConceptScore W2793494562C115961682 @default.
- W2793494562 hasConceptScore W2793494562C121332964 @default.
- W2793494562 hasConceptScore W2793494562C127162648 @default.
- W2793494562 hasConceptScore W2793494562C134306372 @default.
- W2793494562 hasConceptScore W2793494562C153180895 @default.
- W2793494562 hasConceptScore W2793494562C154945302 @default.
- W2793494562 hasConceptScore W2793494562C199360897 @default.
- W2793494562 hasConceptScore W2793494562C26546657 @default.
- W2793494562 hasConceptScore W2793494562C2779843651 @default.
- W2793494562 hasConceptScore W2793494562C32022120 @default.
- W2793494562 hasConceptScore W2793494562C33923547 @default.
- W2793494562 hasConceptScore W2793494562C40636538 @default.
- W2793494562 hasConceptScore W2793494562C41008148 @default.
- W2793494562 hasConceptScore W2793494562C62520636 @default.
- W2793494562 hasConceptScore W2793494562C73555534 @default.