Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793509212> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2793509212 abstract "To get regions of Ulva prolifera, we propose a novel end-to-end way to segment the Ulva prolifera regions via aggregation of local classify prediction results. We creatively adopt SEEDS (Superpixels Extracted via Energy-Driven Sampling) to generate local multi-scale patches. We use powerful convolution neural networks to learn and classify the patches. At last, mapping the classify prediction results of patches to the whole image according to the patches classify prediction results, we can get more detailed segmentation of Ulva prolifera. As for the dataset, we collected images by UAV (unmanned aerial vehicle) in coastal waters off Qingdao, China. We show experimentally this method achieves great segmentation performance of Ulva prolifera, despite its indistinct features. In contrast, we train the model in fully convolutional networks for semantic segmentation based on our dataset, while our result achieves superior accuracy." @default.
- W2793509212 created "2018-03-29" @default.
- W2793509212 creator A5009764222 @default.
- W2793509212 creator A5017601344 @default.
- W2793509212 creator A5029633264 @default.
- W2793509212 creator A5043459573 @default.
- W2793509212 creator A5046668357 @default.
- W2793509212 creator A5084733299 @default.
- W2793509212 creator A5085718321 @default.
- W2793509212 date "2017-12-01" @default.
- W2793509212 modified "2023-09-26" @default.
- W2793509212 title "Accurate segmentation of Ulva prolifera regions with superpixel and CNNs" @default.
- W2793509212 cites W1533861849 @default.
- W2793509212 cites W1536680647 @default.
- W2793509212 cites W1548953334 @default.
- W2793509212 cites W1665214252 @default.
- W2793509212 cites W1677182931 @default.
- W2793509212 cites W1994938019 @default.
- W2793509212 cites W1999478155 @default.
- W2793509212 cites W2121947440 @default.
- W2793509212 cites W2136758825 @default.
- W2793509212 cites W2147800946 @default.
- W2793509212 cites W2298605637 @default.
- W2793509212 cites W2400262625 @default.
- W2793509212 cites W2407521645 @default.
- W2793509212 cites W2473415337 @default.
- W2793509212 cites W2592912586 @default.
- W2793509212 cites W2613718673 @default.
- W2793509212 doi "https://doi.org/10.1109/spac.2017.8304318" @default.
- W2793509212 hasPublicationYear "2017" @default.
- W2793509212 type Work @default.
- W2793509212 sameAs 2793509212 @default.
- W2793509212 citedByCount "2" @default.
- W2793509212 countsByYear W27935092122019 @default.
- W2793509212 countsByYear W27935092122022 @default.
- W2793509212 crossrefType "proceedings-article" @default.
- W2793509212 hasAuthorship W2793509212A5009764222 @default.
- W2793509212 hasAuthorship W2793509212A5017601344 @default.
- W2793509212 hasAuthorship W2793509212A5029633264 @default.
- W2793509212 hasAuthorship W2793509212A5043459573 @default.
- W2793509212 hasAuthorship W2793509212A5046668357 @default.
- W2793509212 hasAuthorship W2793509212A5084733299 @default.
- W2793509212 hasAuthorship W2793509212A5085718321 @default.
- W2793509212 hasConcept C153180895 @default.
- W2793509212 hasConcept C154945302 @default.
- W2793509212 hasConcept C41008148 @default.
- W2793509212 hasConcept C45347329 @default.
- W2793509212 hasConcept C50644808 @default.
- W2793509212 hasConcept C81363708 @default.
- W2793509212 hasConcept C89600930 @default.
- W2793509212 hasConceptScore W2793509212C153180895 @default.
- W2793509212 hasConceptScore W2793509212C154945302 @default.
- W2793509212 hasConceptScore W2793509212C41008148 @default.
- W2793509212 hasConceptScore W2793509212C45347329 @default.
- W2793509212 hasConceptScore W2793509212C50644808 @default.
- W2793509212 hasConceptScore W2793509212C81363708 @default.
- W2793509212 hasConceptScore W2793509212C89600930 @default.
- W2793509212 hasLocation W27935092121 @default.
- W2793509212 hasOpenAccess W2793509212 @default.
- W2793509212 hasPrimaryLocation W27935092121 @default.
- W2793509212 hasRelatedWork W2025246144 @default.
- W2793509212 hasRelatedWork W2296462109 @default.
- W2793509212 hasRelatedWork W2731200508 @default.
- W2793509212 hasRelatedWork W2884909011 @default.
- W2793509212 hasRelatedWork W2890861818 @default.
- W2793509212 hasRelatedWork W2896347488 @default.
- W2793509212 hasRelatedWork W2900355025 @default.
- W2793509212 hasRelatedWork W2945333368 @default.
- W2793509212 hasRelatedWork W2963652396 @default.
- W2793509212 hasRelatedWork W2965045533 @default.
- W2793509212 hasRelatedWork W2965380095 @default.
- W2793509212 hasRelatedWork W3003682051 @default.
- W2793509212 hasRelatedWork W3010714374 @default.
- W2793509212 hasRelatedWork W3135862089 @default.
- W2793509212 hasRelatedWork W3169308847 @default.
- W2793509212 hasRelatedWork W3198323177 @default.
- W2793509212 hasRelatedWork W3200626696 @default.
- W2793509212 hasRelatedWork W3205643962 @default.
- W2793509212 hasRelatedWork W3212374393 @default.
- W2793509212 hasRelatedWork W2956186796 @default.
- W2793509212 isParatext "false" @default.
- W2793509212 isRetracted "false" @default.
- W2793509212 magId "2793509212" @default.
- W2793509212 workType "article" @default.