Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793609653> ?p ?o ?g. }
- W2793609653 abstract "How can we select the best performing data‐driven model? How can we rigorously estimate its generalization error? Statistical learning theory (SLT) answers these questions by deriving nonasymptotic bounds on the generalization error of a model or, in other words, by delivering upper bounding of the true error of the learned model based just on quantities computed on the available data. However, for a long time, SLT has been considered only as an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this review is to give an intelligible overview of the problems of model selection (MS) and error estimation (EE), by focusing on the ideas behind the different SLT‐based approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. We start by presenting the seminal works of the 80s until the most recent results, then discuss open problems and finally outline future directions of this field of research. This article is categorized under: Algorithmic Development > Statistics" @default.
- W2793609653 created "2018-03-29" @default.
- W2793609653 creator A5045802198 @default.
- W2793609653 date "2018-03-22" @default.
- W2793609653 modified "2023-09-23" @default.
- W2793609653 title "Model selection and error estimation without the agonizing pain" @default.
- W2793609653 cites W1491638595 @default.
- W2793609653 cites W1498282191 @default.
- W2793609653 cites W1538170657 @default.
- W2793609653 cites W1555759181 @default.
- W2793609653 cites W1556145998 @default.
- W2793609653 cites W1564947197 @default.
- W2793609653 cites W1568481205 @default.
- W2793609653 cites W1572372689 @default.
- W2793609653 cites W1587078375 @default.
- W2793609653 cites W158824538 @default.
- W2793609653 cites W1607832978 @default.
- W2793609653 cites W1628829797 @default.
- W2793609653 cites W171835870 @default.
- W2793609653 cites W1827781415 @default.
- W2793609653 cites W1963492191 @default.
- W2793609653 cites W1964153937 @default.
- W2793609653 cites W1968436459 @default.
- W2793609653 cites W1968941759 @default.
- W2793609653 cites W1971361630 @default.
- W2793609653 cites W1972670046 @default.
- W2793609653 cites W1973286131 @default.
- W2793609653 cites W1974349322 @default.
- W2793609653 cites W1975846642 @default.
- W2793609653 cites W1976354615 @default.
- W2793609653 cites W1976891431 @default.
- W2793609653 cites W1982723861 @default.
- W2793609653 cites W1985511977 @default.
- W2793609653 cites W1990334093 @default.
- W2793609653 cites W1991259334 @default.
- W2793609653 cites W1995945562 @default.
- W2793609653 cites W1996437515 @default.
- W2793609653 cites W1999376700 @default.
- W2793609653 cites W2006151125 @default.
- W2793609653 cites W2008740515 @default.
- W2793609653 cites W2009784682 @default.
- W2793609653 cites W2014384147 @default.
- W2793609653 cites W2020913456 @default.
- W2793609653 cites W2022392475 @default.
- W2793609653 cites W2023533506 @default.
- W2793609653 cites W2024293109 @default.
- W2793609653 cites W2029029543 @default.
- W2793609653 cites W2031690114 @default.
- W2793609653 cites W2033305391 @default.
- W2793609653 cites W2033559768 @default.
- W2793609653 cites W2034365297 @default.
- W2793609653 cites W2037982184 @default.
- W2793609653 cites W2042587503 @default.
- W2793609653 cites W2042929821 @default.
- W2793609653 cites W2048210691 @default.
- W2793609653 cites W2048305092 @default.
- W2793609653 cites W2049393399 @default.
- W2793609653 cites W2055186664 @default.
- W2793609653 cites W2059811159 @default.
- W2793609653 cites W2062714872 @default.
- W2793609653 cites W2063610652 @default.
- W2793609653 cites W2064955097 @default.
- W2793609653 cites W2068558570 @default.
- W2793609653 cites W2068728923 @default.
- W2793609653 cites W2070902649 @default.
- W2793609653 cites W2077366952 @default.
- W2793609653 cites W2077641783 @default.
- W2793609653 cites W2079223539 @default.
- W2793609653 cites W2080872718 @default.
- W2793609653 cites W2082233060 @default.
- W2793609653 cites W2084572036 @default.
- W2793609653 cites W2087258353 @default.
- W2793609653 cites W2087862691 @default.
- W2793609653 cites W2089310500 @default.
- W2793609653 cites W2089880431 @default.
- W2793609653 cites W2090547656 @default.
- W2793609653 cites W2091233543 @default.
- W2793609653 cites W2092095117 @default.
- W2793609653 cites W2092317945 @default.
- W2793609653 cites W2100483895 @default.
- W2793609653 cites W2103775046 @default.
- W2793609653 cites W2105400096 @default.
- W2793609653 cites W2106491486 @default.
- W2793609653 cites W2107193723 @default.
- W2793609653 cites W2108810117 @default.
- W2793609653 cites W2108995755 @default.
- W2793609653 cites W2109135024 @default.
- W2793609653 cites W2109426455 @default.
- W2793609653 cites W2109445534 @default.
- W2793609653 cites W2116942894 @default.
- W2793609653 cites W2120875792 @default.
- W2793609653 cites W2122111042 @default.
- W2793609653 cites W2122825543 @default.
- W2793609653 cites W2123269459 @default.
- W2793609653 cites W2124181495 @default.
- W2793609653 cites W2127163205 @default.
- W2793609653 cites W2128552148 @default.
- W2793609653 cites W2129192653 @default.
- W2793609653 cites W2129538346 @default.
- W2793609653 cites W2131043876 @default.