Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793617312> ?p ?o ?g. }
- W2793617312 endingPage "10" @default.
- W2793617312 startingPage "1" @default.
- W2793617312 abstract "This paper proposes a new hybrid approach for constructing high-quality prediction intervals (PIs) for landslide displacements. In the first stage, we develop an improved method to optimize bootstrap-based PIs. The improved method uses part of the selected neural networks (NNs) rather than all of the NNs to construct PIs. To guarantee computational efficiency, random vector functional link networks (RVFLNs) are adopted as predictors. In the second stage, to handle the mutational points in landslide displacement prediction, the improved method is integrated with a NN switched method. The effectiveness of the proposed hybrid method has been validated through comprehensive cases using two benchmark data sets and three real-world landslide data sets." @default.
- W2793617312 created "2018-03-29" @default.
- W2793617312 creator A5026300494 @default.
- W2793617312 creator A5036480915 @default.
- W2793617312 creator A5048797071 @default.
- W2793617312 creator A5052953438 @default.
- W2793617312 creator A5060197287 @default.
- W2793617312 creator A5088094619 @default.
- W2793617312 date "2018-05-01" @default.
- W2793617312 modified "2023-10-13" @default.
- W2793617312 title "Constructing prediction intervals for landslide displacement using bootstrapping random vector functional link networks selective ensemble with neural networks switched" @default.
- W2793617312 cites W1965214782 @default.
- W2793617312 cites W1978091482 @default.
- W2793617312 cites W1994468395 @default.
- W2793617312 cites W1996640396 @default.
- W2793617312 cites W1997044960 @default.
- W2793617312 cites W1999154420 @default.
- W2793617312 cites W2003381260 @default.
- W2793617312 cites W2005317867 @default.
- W2793617312 cites W2008709824 @default.
- W2793617312 cites W2012638612 @default.
- W2793617312 cites W2013464222 @default.
- W2793617312 cites W2019157375 @default.
- W2793617312 cites W2037072271 @default.
- W2793617312 cites W2041461910 @default.
- W2793617312 cites W2054458966 @default.
- W2793617312 cites W2056386366 @default.
- W2793617312 cites W2071760479 @default.
- W2793617312 cites W2073008340 @default.
- W2793617312 cites W2074942959 @default.
- W2793617312 cites W2078622091 @default.
- W2793617312 cites W2091881089 @default.
- W2793617312 cites W2094631910 @default.
- W2793617312 cites W2100128988 @default.
- W2793617312 cites W2109316012 @default.
- W2793617312 cites W2111072639 @default.
- W2793617312 cites W2114312120 @default.
- W2793617312 cites W2123223828 @default.
- W2793617312 cites W2126084135 @default.
- W2793617312 cites W2132477882 @default.
- W2793617312 cites W2138527687 @default.
- W2793617312 cites W2139328431 @default.
- W2793617312 cites W2140627010 @default.
- W2793617312 cites W2153232138 @default.
- W2793617312 cites W2159421569 @default.
- W2793617312 cites W2171666055 @default.
- W2793617312 cites W2229668941 @default.
- W2793617312 cites W2284304237 @default.
- W2793617312 cites W2328886089 @default.
- W2793617312 cites W2395415020 @default.
- W2793617312 cites W2466630619 @default.
- W2793617312 cites W2743335979 @default.
- W2793617312 doi "https://doi.org/10.1016/j.neucom.2018.02.046" @default.
- W2793617312 hasPublicationYear "2018" @default.
- W2793617312 type Work @default.
- W2793617312 sameAs 2793617312 @default.
- W2793617312 citedByCount "44" @default.
- W2793617312 countsByYear W27936173122019 @default.
- W2793617312 countsByYear W27936173122020 @default.
- W2793617312 countsByYear W27936173122021 @default.
- W2793617312 countsByYear W27936173122022 @default.
- W2793617312 countsByYear W27936173122023 @default.
- W2793617312 crossrefType "journal-article" @default.
- W2793617312 hasAuthorship W2793617312A5026300494 @default.
- W2793617312 hasAuthorship W2793617312A5036480915 @default.
- W2793617312 hasAuthorship W2793617312A5048797071 @default.
- W2793617312 hasAuthorship W2793617312A5052953438 @default.
- W2793617312 hasAuthorship W2793617312A5060197287 @default.
- W2793617312 hasAuthorship W2793617312A5088094619 @default.
- W2793617312 hasConcept C105795698 @default.
- W2793617312 hasConcept C107551265 @default.
- W2793617312 hasConcept C11413529 @default.
- W2793617312 hasConcept C119857082 @default.
- W2793617312 hasConcept C122123141 @default.
- W2793617312 hasConcept C12267149 @default.
- W2793617312 hasConcept C124101348 @default.
- W2793617312 hasConcept C127313418 @default.
- W2793617312 hasConcept C13280743 @default.
- W2793617312 hasConcept C138405894 @default.
- W2793617312 hasConcept C149782125 @default.
- W2793617312 hasConcept C154945302 @default.
- W2793617312 hasConcept C15744967 @default.
- W2793617312 hasConcept C169258074 @default.
- W2793617312 hasConcept C185798385 @default.
- W2793617312 hasConcept C186295008 @default.
- W2793617312 hasConcept C187320778 @default.
- W2793617312 hasConcept C199360897 @default.
- W2793617312 hasConcept C207609745 @default.
- W2793617312 hasConcept C2780801425 @default.
- W2793617312 hasConcept C33923547 @default.
- W2793617312 hasConcept C41008148 @default.
- W2793617312 hasConcept C50644808 @default.
- W2793617312 hasConcept C542102704 @default.
- W2793617312 hasConceptScore W2793617312C105795698 @default.
- W2793617312 hasConceptScore W2793617312C107551265 @default.
- W2793617312 hasConceptScore W2793617312C11413529 @default.
- W2793617312 hasConceptScore W2793617312C119857082 @default.
- W2793617312 hasConceptScore W2793617312C122123141 @default.