Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793624836> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2793624836 endingPage "197" @default.
- W2793624836 startingPage "197" @default.
- W2793624836 abstract "In the production of cold-rolled strip, the strip surface may suffer from various defects which need to be detected and identified using an online inspection system. The system is equipped with high-speed and high-resolution cameras to acquire images from the moving strip surface. Features are then extracted from the images and are used as inputs of a pre-trained classifier to identify the type of defect. New types of defect often appear in production. At this point the pre-trained classifier needs to be quickly retrained and deployed in seconds to meet the requirement of the online identification of all defects in the environment of a continuous production line. Therefore, the method for extracting the image features and the training for the classification model should be automated and fast enough, normally within seconds. This paper presents our findings in investigating the computational and classification performance of various feature extraction methods and classification models for the strip surface defect identification. The methods include Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Local Binary Patterns (LBP). The classifiers we have assessed include Back Propagation (BP) neural network, Support Vector Machine (SVM) and Extreme Learning Machine (ELM). By comparing various combinations of different feature extraction and classification methods, our experiments show that the hybrid method of LBP for feature extraction and ELM for defect classification results in less training and identification time with higher classification accuracy, which satisfied online real-time identification." @default.
- W2793624836 created "2018-03-29" @default.
- W2793624836 creator A5004872807 @default.
- W2793624836 creator A5053719139 @default.
- W2793624836 creator A5077271474 @default.
- W2793624836 date "2018-03-20" @default.
- W2793624836 modified "2023-09-29" @default.
- W2793624836 title "Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine" @default.
- W2793624836 cites W2000502308 @default.
- W2793624836 cites W2002984713 @default.
- W2793624836 cites W2029927832 @default.
- W2793624836 cites W2039051707 @default.
- W2793624836 cites W2046084401 @default.
- W2793624836 cites W2063253123 @default.
- W2793624836 cites W2087378082 @default.
- W2793624836 cites W2111072639 @default.
- W2793624836 cites W2119605622 @default.
- W2793624836 cites W2149494055 @default.
- W2793624836 cites W2179290474 @default.
- W2793624836 doi "https://doi.org/10.3390/met8030197" @default.
- W2793624836 hasPublicationYear "2018" @default.
- W2793624836 type Work @default.
- W2793624836 sameAs 2793624836 @default.
- W2793624836 citedByCount "18" @default.
- W2793624836 countsByYear W27936248362019 @default.
- W2793624836 countsByYear W27936248362020 @default.
- W2793624836 countsByYear W27936248362021 @default.
- W2793624836 countsByYear W27936248362022 @default.
- W2793624836 countsByYear W27936248362023 @default.
- W2793624836 crossrefType "journal-article" @default.
- W2793624836 hasAuthorship W2793624836A5004872807 @default.
- W2793624836 hasAuthorship W2793624836A5053719139 @default.
- W2793624836 hasAuthorship W2793624836A5077271474 @default.
- W2793624836 hasBestOaLocation W27936248361 @default.
- W2793624836 hasConcept C115961682 @default.
- W2793624836 hasConcept C119857082 @default.
- W2793624836 hasConcept C12267149 @default.
- W2793624836 hasConcept C153180895 @default.
- W2793624836 hasConcept C154945302 @default.
- W2793624836 hasConcept C2780150128 @default.
- W2793624836 hasConcept C31972630 @default.
- W2793624836 hasConcept C41008148 @default.
- W2793624836 hasConcept C50644808 @default.
- W2793624836 hasConcept C52622490 @default.
- W2793624836 hasConcept C53533937 @default.
- W2793624836 hasConcept C61265191 @default.
- W2793624836 hasConcept C66905080 @default.
- W2793624836 hasConcept C87335442 @default.
- W2793624836 hasConcept C95623464 @default.
- W2793624836 hasConceptScore W2793624836C115961682 @default.
- W2793624836 hasConceptScore W2793624836C119857082 @default.
- W2793624836 hasConceptScore W2793624836C12267149 @default.
- W2793624836 hasConceptScore W2793624836C153180895 @default.
- W2793624836 hasConceptScore W2793624836C154945302 @default.
- W2793624836 hasConceptScore W2793624836C2780150128 @default.
- W2793624836 hasConceptScore W2793624836C31972630 @default.
- W2793624836 hasConceptScore W2793624836C41008148 @default.
- W2793624836 hasConceptScore W2793624836C50644808 @default.
- W2793624836 hasConceptScore W2793624836C52622490 @default.
- W2793624836 hasConceptScore W2793624836C53533937 @default.
- W2793624836 hasConceptScore W2793624836C61265191 @default.
- W2793624836 hasConceptScore W2793624836C66905080 @default.
- W2793624836 hasConceptScore W2793624836C87335442 @default.
- W2793624836 hasConceptScore W2793624836C95623464 @default.
- W2793624836 hasFunder F4320321001 @default.
- W2793624836 hasIssue "3" @default.
- W2793624836 hasLocation W27936248361 @default.
- W2793624836 hasOpenAccess W2793624836 @default.
- W2793624836 hasPrimaryLocation W27936248361 @default.
- W2793624836 hasRelatedWork W1789705271 @default.
- W2793624836 hasRelatedWork W1964805666 @default.
- W2793624836 hasRelatedWork W2042348617 @default.
- W2793624836 hasRelatedWork W2540211042 @default.
- W2793624836 hasRelatedWork W2793624836 @default.
- W2793624836 hasRelatedWork W2982679292 @default.
- W2793624836 hasRelatedWork W3003836766 @default.
- W2793624836 hasRelatedWork W3013515612 @default.
- W2793624836 hasRelatedWork W4385636057 @default.
- W2793624836 hasRelatedWork W2345184372 @default.
- W2793624836 hasVolume "8" @default.
- W2793624836 isParatext "false" @default.
- W2793624836 isRetracted "false" @default.
- W2793624836 magId "2793624836" @default.
- W2793624836 workType "article" @default.