Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793627163> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2793627163 abstract "Lifelong Machine Learning (LML) based topic models are designed with an automatic learning mechanism. They are highly suitable for large-scale data with many datasets. The model processes each dataset for generating topics while it retains valuable knowledge from it as rules. The model grows in knowledge as it processes more datasets, following a continuous learning mechanism. The knowledge learned through past experience is utilized to produce better results for future datasets. Generally the learning procedure consists of an evaluation criterion that measures the confidence in a rule and a threshold that provides the par value. The existing LML based topic models learn rules with measures of co-occurrence from statistics which limits it to learning syntagmatic rules only. However, rules consisting of paradigmatic words are ignored as they do not co-occur. They are usually word synonyms and are alternately used. The proposed ParaSyn-LMLTM model learns paradigmatic rules as well while improving syntagmatic rules with techniques from linguistics. It enhances the learning capability of the model which is reflected via improved quality of topics on Chen2014 dataset." @default.
- W2793627163 created "2018-03-29" @default.
- W2793627163 creator A5015169296 @default.
- W2793627163 creator A5056364100 @default.
- W2793627163 date "2017-11-01" @default.
- W2793627163 modified "2023-09-24" @default.
- W2793627163 title "Paradigmatic and syntagmatic rule extraction for lifelong machine learning topic models" @default.
- W2793627163 cites W1982531156 @default.
- W2793627163 cites W1995219110 @default.
- W2793627163 cites W1995866178 @default.
- W2793627163 cites W2034196434 @default.
- W2793627163 cites W2044185127 @default.
- W2793627163 cites W2169353679 @default.
- W2793627163 cites W2252012216 @default.
- W2793627163 cites W2336160054 @default.
- W2793627163 cites W2565196381 @default.
- W2793627163 cites W2566506059 @default.
- W2793627163 cites W2583335480 @default.
- W2793627163 cites W2585500218 @default.
- W2793627163 cites W4205184193 @default.
- W2793627163 doi "https://doi.org/10.1109/iceei.2017.8312442" @default.
- W2793627163 hasPublicationYear "2017" @default.
- W2793627163 type Work @default.
- W2793627163 sameAs 2793627163 @default.
- W2793627163 citedByCount "1" @default.
- W2793627163 countsByYear W27936271632018 @default.
- W2793627163 crossrefType "proceedings-article" @default.
- W2793627163 hasAuthorship W2793627163A5015169296 @default.
- W2793627163 hasAuthorship W2793627163A5056364100 @default.
- W2793627163 hasConcept C108771440 @default.
- W2793627163 hasConcept C119857082 @default.
- W2793627163 hasConcept C138885662 @default.
- W2793627163 hasConcept C154945302 @default.
- W2793627163 hasConcept C15744967 @default.
- W2793627163 hasConcept C19417346 @default.
- W2793627163 hasConcept C204321447 @default.
- W2793627163 hasConcept C29155451 @default.
- W2793627163 hasConcept C41008148 @default.
- W2793627163 hasConcept C41895202 @default.
- W2793627163 hasConcept C90805587 @default.
- W2793627163 hasConceptScore W2793627163C108771440 @default.
- W2793627163 hasConceptScore W2793627163C119857082 @default.
- W2793627163 hasConceptScore W2793627163C138885662 @default.
- W2793627163 hasConceptScore W2793627163C154945302 @default.
- W2793627163 hasConceptScore W2793627163C15744967 @default.
- W2793627163 hasConceptScore W2793627163C19417346 @default.
- W2793627163 hasConceptScore W2793627163C204321447 @default.
- W2793627163 hasConceptScore W2793627163C29155451 @default.
- W2793627163 hasConceptScore W2793627163C41008148 @default.
- W2793627163 hasConceptScore W2793627163C41895202 @default.
- W2793627163 hasConceptScore W2793627163C90805587 @default.
- W2793627163 hasLocation W27936271631 @default.
- W2793627163 hasOpenAccess W2793627163 @default.
- W2793627163 hasPrimaryLocation W27936271631 @default.
- W2793627163 hasRelatedWork W1518341025 @default.
- W2793627163 hasRelatedWork W1526572660 @default.
- W2793627163 hasRelatedWork W1547214099 @default.
- W2793627163 hasRelatedWork W1602152045 @default.
- W2793627163 hasRelatedWork W2074790252 @default.
- W2793627163 hasRelatedWork W2105868724 @default.
- W2793627163 hasRelatedWork W2106855501 @default.
- W2793627163 hasRelatedWork W2140985021 @default.
- W2793627163 hasRelatedWork W2142327972 @default.
- W2793627163 hasRelatedWork W2160581145 @default.
- W2793627163 hasRelatedWork W2548195627 @default.
- W2793627163 hasRelatedWork W2580674108 @default.
- W2793627163 hasRelatedWork W2767020241 @default.
- W2793627163 hasRelatedWork W2892354565 @default.
- W2793627163 hasRelatedWork W2942963480 @default.
- W2793627163 hasRelatedWork W2963804993 @default.
- W2793627163 hasRelatedWork W2974299639 @default.
- W2793627163 hasRelatedWork W3091613388 @default.
- W2793627163 hasRelatedWork W3208630568 @default.
- W2793627163 hasRelatedWork W116513489 @default.
- W2793627163 isParatext "false" @default.
- W2793627163 isRetracted "false" @default.
- W2793627163 magId "2793627163" @default.
- W2793627163 workType "article" @default.