Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793697480> ?p ?o ?g. }
- W2793697480 abstract "This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability, where ln(T) in the limit of small variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss the exponential dependence in L of T. In particular, it is shown how a T≍exp[L(A^{'}R-B^{'})] can be derived in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville. This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to the asymmetric probability density function of kinetic energy of turbulence." @default.
- W2793697480 created "2018-03-29" @default.
- W2793697480 creator A5082195595 @default.
- W2793697480 date "2018-02-26" @default.
- W2793697480 modified "2023-10-15" @default.
- W2793697480 title "Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows" @default.
- W2793697480 cites W1518747218 @default.
- W2793697480 cites W1971796730 @default.
- W2793697480 cites W1972633005 @default.
- W2793697480 cites W1975237306 @default.
- W2793697480 cites W1975495365 @default.
- W2793697480 cites W1979089106 @default.
- W2793697480 cites W1981804039 @default.
- W2793697480 cites W1982399836 @default.
- W2793697480 cites W2000146740 @default.
- W2793697480 cites W2007823515 @default.
- W2793697480 cites W2012852224 @default.
- W2793697480 cites W2023553917 @default.
- W2793697480 cites W2027437004 @default.
- W2793697480 cites W2034066189 @default.
- W2793697480 cites W2037393162 @default.
- W2793697480 cites W2039951169 @default.
- W2793697480 cites W2047841201 @default.
- W2793697480 cites W2059043348 @default.
- W2793697480 cites W2062857030 @default.
- W2793697480 cites W2066454569 @default.
- W2793697480 cites W2069633316 @default.
- W2793697480 cites W2070643414 @default.
- W2793697480 cites W2080169890 @default.
- W2793697480 cites W2091054518 @default.
- W2793697480 cites W2092144432 @default.
- W2793697480 cites W2104176564 @default.
- W2793697480 cites W2104208934 @default.
- W2793697480 cites W2108980487 @default.
- W2793697480 cites W2132937211 @default.
- W2793697480 cites W2138141695 @default.
- W2793697480 cites W2142104939 @default.
- W2793697480 cites W2150609473 @default.
- W2793697480 cites W2163891345 @default.
- W2793697480 cites W2169489680 @default.
- W2793697480 cites W2170550844 @default.
- W2793697480 cites W2299452776 @default.
- W2793697480 cites W2317628669 @default.
- W2793697480 cites W2415384437 @default.
- W2793697480 cites W2494687576 @default.
- W2793697480 cites W2549426224 @default.
- W2793697480 cites W2737614437 @default.
- W2793697480 cites W2962799079 @default.
- W2793697480 cites W2964004770 @default.
- W2793697480 cites W3098926478 @default.
- W2793697480 cites W3100642814 @default.
- W2793697480 cites W3100795918 @default.
- W2793697480 cites W3102171281 @default.
- W2793697480 cites W3102470949 @default.
- W2793697480 cites W3104200895 @default.
- W2793697480 cites W3104746900 @default.
- W2793697480 cites W4233487859 @default.
- W2793697480 cites W4237038455 @default.
- W2793697480 doi "https://doi.org/10.1103/physreve.97.023109" @default.
- W2793697480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29548159" @default.
- W2793697480 hasPublicationYear "2018" @default.
- W2793697480 type Work @default.
- W2793697480 sameAs 2793697480 @default.
- W2793697480 citedByCount "12" @default.
- W2793697480 countsByYear W27936974802019 @default.
- W2793697480 countsByYear W27936974802020 @default.
- W2793697480 countsByYear W27936974802021 @default.
- W2793697480 countsByYear W27936974802022 @default.
- W2793697480 countsByYear W27936974802023 @default.
- W2793697480 crossrefType "journal-article" @default.
- W2793697480 hasAuthorship W2793697480A5082195595 @default.
- W2793697480 hasBestOaLocation W27936974802 @default.
- W2793697480 hasConcept C121332964 @default.
- W2793697480 hasConcept C121864883 @default.
- W2793697480 hasConcept C150711758 @default.
- W2793697480 hasConcept C182748727 @default.
- W2793697480 hasConcept C196558001 @default.
- W2793697480 hasConcept C57879066 @default.
- W2793697480 hasConcept C76563973 @default.
- W2793697480 hasConceptScore W2793697480C121332964 @default.
- W2793697480 hasConceptScore W2793697480C121864883 @default.
- W2793697480 hasConceptScore W2793697480C150711758 @default.
- W2793697480 hasConceptScore W2793697480C182748727 @default.
- W2793697480 hasConceptScore W2793697480C196558001 @default.
- W2793697480 hasConceptScore W2793697480C57879066 @default.
- W2793697480 hasConceptScore W2793697480C76563973 @default.
- W2793697480 hasIssue "2" @default.
- W2793697480 hasLocation W27936974801 @default.
- W2793697480 hasLocation W27936974802 @default.
- W2793697480 hasLocation W27936974803 @default.
- W2793697480 hasLocation W27936974804 @default.
- W2793697480 hasLocation W27936974805 @default.
- W2793697480 hasLocation W27936974806 @default.
- W2793697480 hasLocation W27936974807 @default.
- W2793697480 hasLocation W27936974808 @default.
- W2793697480 hasLocation W27936974809 @default.
- W2793697480 hasOpenAccess W2793697480 @default.
- W2793697480 hasPrimaryLocation W27936974801 @default.
- W2793697480 hasRelatedWork W1975241286 @default.
- W2793697480 hasRelatedWork W2016300288 @default.