Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793784710> ?p ?o ?g. }
- W2793784710 endingPage "5393" @default.
- W2793784710 startingPage "5380" @default.
- W2793784710 abstract "The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods." @default.
- W2793784710 created "2018-03-29" @default.
- W2793784710 creator A5000970532 @default.
- W2793784710 creator A5001277681 @default.
- W2793784710 creator A5015860750 @default.
- W2793784710 creator A5023023880 @default.
- W2793784710 creator A5075148403 @default.
- W2793784710 creator A5078092645 @default.
- W2793784710 creator A5091017287 @default.
- W2793784710 date "2018-11-01" @default.
- W2793784710 modified "2023-10-14" @default.
- W2793784710 title "A Generalized Model for Robust Tensor Factorization With Noise Modeling by Mixture of Gaussians" @default.
- W2793784710 cites W1500188831 @default.
- W2793784710 cites W1915743070 @default.
- W2793784710 cites W1963826206 @default.
- W2793784710 cites W1985242206 @default.
- W2793784710 cites W1986326495 @default.
- W2793784710 cites W2000215628 @default.
- W2793784710 cites W2005238835 @default.
- W2793784710 cites W2012807998 @default.
- W2793784710 cites W2024182011 @default.
- W2793784710 cites W2045983409 @default.
- W2793784710 cites W2049633694 @default.
- W2793784710 cites W2056636001 @default.
- W2793784710 cites W2056639756 @default.
- W2793784710 cites W2057503509 @default.
- W2793784710 cites W2060225944 @default.
- W2793784710 cites W2072477921 @default.
- W2793784710 cites W2086022711 @default.
- W2793784710 cites W2091449379 @default.
- W2793784710 cites W2095906131 @default.
- W2793784710 cites W2098693229 @default.
- W2793784710 cites W2100109944 @default.
- W2793784710 cites W2113055885 @default.
- W2793784710 cites W2121647436 @default.
- W2793784710 cites W2123921160 @default.
- W2793784710 cites W2130259898 @default.
- W2793784710 cites W2135666716 @default.
- W2793784710 cites W2138507544 @default.
- W2793784710 cites W2138835141 @default.
- W2793784710 cites W2141983208 @default.
- W2793784710 cites W2145962650 @default.
- W2793784710 cites W2147512299 @default.
- W2793784710 cites W2150489380 @default.
- W2793784710 cites W2157418942 @default.
- W2793784710 cites W2160551639 @default.
- W2793784710 cites W2167372553 @default.
- W2793784710 cites W2171520281 @default.
- W2793784710 cites W2197175231 @default.
- W2793784710 cites W2254605105 @default.
- W2793784710 cites W2258054274 @default.
- W2793784710 cites W2294181535 @default.
- W2793784710 cites W2428204121 @default.
- W2793784710 cites W2433430858 @default.
- W2793784710 cites W2547812180 @default.
- W2793784710 cites W4294541781 @default.
- W2793784710 doi "https://doi.org/10.1109/tnnls.2018.2796606" @default.
- W2793784710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994738" @default.
- W2793784710 hasPublicationYear "2018" @default.
- W2793784710 type Work @default.
- W2793784710 sameAs 2793784710 @default.
- W2793784710 citedByCount "43" @default.
- W2793784710 countsByYear W27937847102018 @default.
- W2793784710 countsByYear W27937847102019 @default.
- W2793784710 countsByYear W27937847102020 @default.
- W2793784710 countsByYear W27937847102021 @default.
- W2793784710 countsByYear W27937847102022 @default.
- W2793784710 countsByYear W27937847102023 @default.
- W2793784710 crossrefType "journal-article" @default.
- W2793784710 hasAuthorship W2793784710A5000970532 @default.
- W2793784710 hasAuthorship W2793784710A5001277681 @default.
- W2793784710 hasAuthorship W2793784710A5015860750 @default.
- W2793784710 hasAuthorship W2793784710A5023023880 @default.
- W2793784710 hasAuthorship W2793784710A5075148403 @default.
- W2793784710 hasAuthorship W2793784710A5078092645 @default.
- W2793784710 hasAuthorship W2793784710A5091017287 @default.
- W2793784710 hasConcept C11413529 @default.
- W2793784710 hasConcept C114614502 @default.
- W2793784710 hasConcept C115961682 @default.
- W2793784710 hasConcept C121332964 @default.
- W2793784710 hasConcept C154945302 @default.
- W2793784710 hasConcept C155281189 @default.
- W2793784710 hasConcept C158693339 @default.
- W2793784710 hasConcept C164226766 @default.
- W2793784710 hasConcept C187834632 @default.
- W2793784710 hasConcept C202444582 @default.
- W2793784710 hasConcept C32834561 @default.
- W2793784710 hasConcept C33923547 @default.
- W2793784710 hasConcept C41008148 @default.
- W2793784710 hasConcept C4199805 @default.
- W2793784710 hasConcept C42355184 @default.
- W2793784710 hasConcept C61224824 @default.
- W2793784710 hasConcept C62520636 @default.
- W2793784710 hasConcept C79337645 @default.
- W2793784710 hasConcept C99498987 @default.
- W2793784710 hasConceptScore W2793784710C11413529 @default.
- W2793784710 hasConceptScore W2793784710C114614502 @default.
- W2793784710 hasConceptScore W2793784710C115961682 @default.