Matches in SemOpenAlex for { <https://semopenalex.org/work/W2793811777> ?p ?o ?g. }
- W2793811777 endingPage "484" @default.
- W2793811777 startingPage "474" @default.
- W2793811777 abstract "This study proposes a feature selection-based approach to identify reasonable spatial–temporal traffic patterns related to the target link, in order to improve the online-prediction performance. The prediction task is composed of two steps: one hybrid intelligent algorithm-based feature selector (FS) is proposed to optimise original state vectors, which are designed empirically during the offline process and optimised state vectors are employed to carry out the online prediction. Numerical experiments by three non-parametric algorithms are conducted with taxis’ global positioning system data in an urban road network of Changsha, China. It is concluded that: (i) under optimised state vectors, the prediction accuracies improve or almost maintain the same; (ii) K-nearest neighbour (KNN) with the simplest state vectors obtains the greatest improvement of prediction performance; (iii) although the performance improvement of ɛ-support vector regression is limited with optimised state vectors, it always outperforms backward-propagation neural network and KNN ; and (iv) three non-parametric approaches with optimised state vectors outperform auto-regressive integrated moving average in relatively longer prediction horizons. In conclusion, such FS-based approach is able to improve or guarantee the prediction performance under the remarkably reduced model complexity, and is a promising methodology for short-term traffic prediction." @default.
- W2793811777 created "2018-03-29" @default.
- W2793811777 creator A5008026682 @default.
- W2793811777 creator A5021302609 @default.
- W2793811777 creator A5025317239 @default.
- W2793811777 creator A5053773821 @default.
- W2793811777 creator A5065374358 @default.
- W2793811777 creator A5070448032 @default.
- W2793811777 date "2018-03-13" @default.
- W2793811777 modified "2023-10-16" @default.
- W2793811777 title "Feature selection‐based approach for urban short‐term travel speed prediction" @default.
- W2793811777 cites W124746903 @default.
- W2793811777 cites W1559006893 @default.
- W2793811777 cites W1631393190 @default.
- W2793811777 cites W1883111670 @default.
- W2793811777 cites W1972269447 @default.
- W2793811777 cites W1976755580 @default.
- W2793811777 cites W1985155898 @default.
- W2793811777 cites W1988420953 @default.
- W2793811777 cites W1989982053 @default.
- W2793811777 cites W1996851706 @default.
- W2793811777 cites W2017337590 @default.
- W2793811777 cites W2019836907 @default.
- W2793811777 cites W2021153764 @default.
- W2793811777 cites W2025210087 @default.
- W2793811777 cites W2032244831 @default.
- W2793811777 cites W2040297119 @default.
- W2793811777 cites W2044794662 @default.
- W2793811777 cites W2049500727 @default.
- W2793811777 cites W2051503055 @default.
- W2793811777 cites W2057918527 @default.
- W2793811777 cites W2068833644 @default.
- W2793811777 cites W2083316861 @default.
- W2793811777 cites W2085592822 @default.
- W2793811777 cites W2087238274 @default.
- W2793811777 cites W2088903070 @default.
- W2793811777 cites W2093921901 @default.
- W2793811777 cites W2094350745 @default.
- W2793811777 cites W2111807801 @default.
- W2793811777 cites W2119460626 @default.
- W2793811777 cites W2129977294 @default.
- W2793811777 cites W2149772057 @default.
- W2793811777 cites W2155366014 @default.
- W2793811777 cites W2169481445 @default.
- W2793811777 cites W2190353863 @default.
- W2793811777 cites W2217442075 @default.
- W2793811777 cites W2337353068 @default.
- W2793811777 cites W2483705917 @default.
- W2793811777 cites W2522960662 @default.
- W2793811777 cites W2553942547 @default.
- W2793811777 cites W2623880185 @default.
- W2793811777 cites W2963420343 @default.
- W2793811777 cites W2993383518 @default.
- W2793811777 cites W4232953319 @default.
- W2793811777 doi "https://doi.org/10.1049/iet-its.2017.0059" @default.
- W2793811777 hasPublicationYear "2018" @default.
- W2793811777 type Work @default.
- W2793811777 sameAs 2793811777 @default.
- W2793811777 citedByCount "23" @default.
- W2793811777 countsByYear W27938117772018 @default.
- W2793811777 countsByYear W27938117772019 @default.
- W2793811777 countsByYear W27938117772020 @default.
- W2793811777 countsByYear W27938117772021 @default.
- W2793811777 countsByYear W27938117772022 @default.
- W2793811777 countsByYear W27938117772023 @default.
- W2793811777 crossrefType "journal-article" @default.
- W2793811777 hasAuthorship W2793811777A5008026682 @default.
- W2793811777 hasAuthorship W2793811777A5021302609 @default.
- W2793811777 hasAuthorship W2793811777A5025317239 @default.
- W2793811777 hasAuthorship W2793811777A5053773821 @default.
- W2793811777 hasAuthorship W2793811777A5065374358 @default.
- W2793811777 hasAuthorship W2793811777A5070448032 @default.
- W2793811777 hasConcept C105795698 @default.
- W2793811777 hasConcept C111919701 @default.
- W2793811777 hasConcept C117251300 @default.
- W2793811777 hasConcept C119857082 @default.
- W2793811777 hasConcept C121332964 @default.
- W2793811777 hasConcept C12267149 @default.
- W2793811777 hasConcept C124101348 @default.
- W2793811777 hasConcept C138885662 @default.
- W2793811777 hasConcept C148483581 @default.
- W2793811777 hasConcept C153180895 @default.
- W2793811777 hasConcept C154945302 @default.
- W2793811777 hasConcept C2776401178 @default.
- W2793811777 hasConcept C33923547 @default.
- W2793811777 hasConcept C41008148 @default.
- W2793811777 hasConcept C41895202 @default.
- W2793811777 hasConcept C50644808 @default.
- W2793811777 hasConcept C61797465 @default.
- W2793811777 hasConcept C62520636 @default.
- W2793811777 hasConcept C83665646 @default.
- W2793811777 hasConcept C98045186 @default.
- W2793811777 hasConceptScore W2793811777C105795698 @default.
- W2793811777 hasConceptScore W2793811777C111919701 @default.
- W2793811777 hasConceptScore W2793811777C117251300 @default.
- W2793811777 hasConceptScore W2793811777C119857082 @default.
- W2793811777 hasConceptScore W2793811777C121332964 @default.
- W2793811777 hasConceptScore W2793811777C12267149 @default.