Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794092024> ?p ?o ?g. }
- W2794092024 abstract "Model-based segmentation approaches are particularly useful in healthcare consumer research, where the primary goal is to identify groups of individuals who share similar attitudinal and behavioral characteristics, in order to develop engagement strategies, create products, and allocates resources tailored to the specific needs of each segment group. Despite the growing research and literature on segmentation models, many healthcare researchers continue to use demographic variables only to classify consumers into groups; while failing to uncover unique patterns, relationships, and latent traits and relationships. The primary aim of this study was to 1) examine the differences in outcomes when classification methods (K-Means and LCA) for segmentation was used in conjunction with continuous and dichotomous scales; and 2) examine the differences in outcomes when prediction methods (CHAID and Neural Networks) for segmentation was used in conjunction with binary and continuous dependent variables and a variation of the classification algorithm. For the purpose of comparison across methods, data from the Medicare Health Outcome Survey was used in all conditions. Results indicated that the best segment class solution was dependent upon both the method and treatment of the inputs and dependent variable for both classification and prediction problems. When the input depression scale was dichotomized, the K-Means model yielded a 6 segment best-class-solution, whereas the LCA model yielded 9 distinct segment classes. On the other hand, LCA models yielded the same segment solution (9 classes), irrespective of the treatment of the depression scale. Similarly, differences in outcomes were identified when the dependent variable was continuous vs. binary when prediction models were used to segment survey respondents. When the outcome was dichotomous, CHAID models resulted in a 5-segment solution, compared to a 6-segment solution for Neural Networks. On the other hand, the binary dependent variable produced a 4-segment solution for both CHAID and Neural Network models. In addition, the interpretation of the segment class profiles is dependent upon both method and condition (input and treatment of dependent variable)." @default.
- W2794092024 created "2018-03-29" @default.
- W2794092024 creator A5024339892 @default.
- W2794092024 date "2018-01-29" @default.
- W2794092024 modified "2023-09-27" @default.
- W2794092024 title "CUSTOMER SEGMENTATION APPROACHES: A COMPARISON OF METHODS WITH DATA FROM THE MEDICARE HEALTH OUTCOMES SURVEY" @default.
- W2794092024 cites W1501315967 @default.
- W2794092024 cites W1605688901 @default.
- W2794092024 cites W1680392829 @default.
- W2794092024 cites W1850527962 @default.
- W2794092024 cites W1963640794 @default.
- W2794092024 cites W1965855329 @default.
- W2794092024 cites W1970325005 @default.
- W2794092024 cites W1974808478 @default.
- W2794092024 cites W1975102236 @default.
- W2794092024 cites W1977775666 @default.
- W2794092024 cites W1987838173 @default.
- W2794092024 cites W1988205006 @default.
- W2794092024 cites W1998981782 @default.
- W2794092024 cites W2000164913 @default.
- W2794092024 cites W2004989369 @default.
- W2794092024 cites W2005247812 @default.
- W2794092024 cites W2007069447 @default.
- W2794092024 cites W2008128519 @default.
- W2794092024 cites W2012653948 @default.
- W2794092024 cites W2019644186 @default.
- W2794092024 cites W2020073125 @default.
- W2794092024 cites W2026360870 @default.
- W2794092024 cites W2026850083 @default.
- W2794092024 cites W2028991330 @default.
- W2794092024 cites W2046164998 @default.
- W2794092024 cites W2047109555 @default.
- W2794092024 cites W2049228615 @default.
- W2794092024 cites W2049390752 @default.
- W2794092024 cites W2050297026 @default.
- W2794092024 cites W2052224054 @default.
- W2794092024 cites W2052309873 @default.
- W2794092024 cites W2052779929 @default.
- W2794092024 cites W2055323881 @default.
- W2794092024 cites W2059888405 @default.
- W2794092024 cites W2066827437 @default.
- W2794092024 cites W2068640436 @default.
- W2794092024 cites W2071552263 @default.
- W2794092024 cites W2077960174 @default.
- W2794092024 cites W2084944667 @default.
- W2794092024 cites W2088697515 @default.
- W2794092024 cites W2090330784 @default.
- W2794092024 cites W2099267815 @default.
- W2794092024 cites W2100128988 @default.
- W2794092024 cites W2108096958 @default.
- W2794092024 cites W2108868276 @default.
- W2794092024 cites W2116736373 @default.
- W2794092024 cites W2119387367 @default.
- W2794092024 cites W2119479037 @default.
- W2794092024 cites W2129017820 @default.
- W2794092024 cites W2130747900 @default.
- W2794092024 cites W2133462743 @default.
- W2794092024 cites W2135046866 @default.
- W2794092024 cites W2138019504 @default.
- W2794092024 cites W2139425275 @default.
- W2794092024 cites W2147499654 @default.
- W2794092024 cites W2152761983 @default.
- W2794092024 cites W2162086569 @default.
- W2794092024 cites W2167191085 @default.
- W2794092024 cites W2171316372 @default.
- W2794092024 cites W2173525519 @default.
- W2794092024 cites W2204383650 @default.
- W2794092024 cites W2254997931 @default.
- W2794092024 cites W3023069927 @default.
- W2794092024 cites W302795849 @default.
- W2794092024 cites W3121411908 @default.
- W2794092024 cites W3122320482 @default.
- W2794092024 cites W3123614577 @default.
- W2794092024 cites W3124354616 @default.
- W2794092024 cites W3125537303 @default.
- W2794092024 cites W3146174752 @default.
- W2794092024 cites W140571646 @default.
- W2794092024 cites W2049266248 @default.
- W2794092024 cites W52145563 @default.
- W2794092024 hasPublicationYear "2018" @default.
- W2794092024 type Work @default.
- W2794092024 sameAs 2794092024 @default.
- W2794092024 citedByCount "0" @default.
- W2794092024 crossrefType "journal-article" @default.
- W2794092024 hasAuthorship W2794092024A5024339892 @default.
- W2794092024 hasConcept C119857082 @default.
- W2794092024 hasConcept C125308379 @default.
- W2794092024 hasConcept C144133560 @default.
- W2794092024 hasConcept C144237770 @default.
- W2794092024 hasConcept C148220186 @default.
- W2794092024 hasConcept C149782125 @default.
- W2794092024 hasConcept C154945302 @default.
- W2794092024 hasConcept C16023879 @default.
- W2794092024 hasConcept C162853370 @default.
- W2794092024 hasConcept C205649164 @default.
- W2794092024 hasConcept C2777212361 @default.
- W2794092024 hasConcept C2778755073 @default.
- W2794092024 hasConcept C33923547 @default.
- W2794092024 hasConcept C41008148 @default.
- W2794092024 hasConcept C58640448 @default.