Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794128247> ?p ?o ?g. }
- W2794128247 endingPage "13" @default.
- W2794128247 startingPage "1" @default.
- W2794128247 abstract "Purpose Next-generation sequencing technologies are actively applied in clinical oncology. Bioinformatics pipeline analysis is an integral part of this process; however, humans cannot yet realize the full potential of the highly complex pipeline output. As a result, the decision to include a variant in the final report during routine clinical sign-out remains challenging. Methods We used an artificial intelligence approach to capture the collective clinical sign-out experience of six board-certified molecular pathologists to build and validate a decision support tool for variant reporting. We extracted all reviewed and reported variants from our clinical database and tested several machine learning models. We used 10-fold cross-validation for our variant call prediction model, which derives a contiguous prediction score from 0 to 1 (no to yes) for clinical reporting. Results For each of the 19,594 initial training variants, our pipeline generates approximately 500 features, which results in a matrix of > 9 million data points. From a comparison of naive Bayes, decision trees, random forests, and logistic regression models, we selected models that allow human interpretability of the prediction score. The logistic regression model demonstrated 1% false negativity and 2% false positivity. The final models’ Youden indices were 0.87 and 0.77 for screening and confirmatory cutoffs, respectively. Retraining on a new assay and performance assessment in 16,123 independent variants validated our approach (Youden index, 0.93). We also derived individual pathologist-centric models (virtual consensus conference function), and a visual drill-down functionality allows assessment of how underlying features contributed to a particular score or decision branch for clinical implementation. Conclusion Our decision support tool for variant reporting is a practically relevant artificial intelligence approach to harness the next-generation sequencing bioinformatics pipeline output when the complexity of data interpretation exceeds human capabilities." @default.
- W2794128247 created "2018-03-29" @default.
- W2794128247 creator A5006018613 @default.
- W2794128247 creator A5009341433 @default.
- W2794128247 creator A5013257322 @default.
- W2794128247 creator A5013557904 @default.
- W2794128247 creator A5019236595 @default.
- W2794128247 creator A5031670445 @default.
- W2794128247 creator A5032840354 @default.
- W2794128247 creator A5033765545 @default.
- W2794128247 creator A5038769490 @default.
- W2794128247 creator A5054045807 @default.
- W2794128247 creator A5056275493 @default.
- W2794128247 creator A5058736332 @default.
- W2794128247 creator A5067299042 @default.
- W2794128247 creator A5078592778 @default.
- W2794128247 creator A5078810229 @default.
- W2794128247 date "2018-12-01" @default.
- W2794128247 modified "2023-09-24" @default.
- W2794128247 title "Artificial Intelligence Approach for Variant Reporting" @default.
- W2794128247 cites W1502549199 @default.
- W2794128247 cites W1789572151 @default.
- W2794128247 cites W1905625627 @default.
- W2794128247 cites W1990484467 @default.
- W2794128247 cites W2014522837 @default.
- W2794128247 cites W2050109119 @default.
- W2794128247 cites W2062291041 @default.
- W2794128247 cites W2064676287 @default.
- W2794128247 cites W2065121554 @default.
- W2794128247 cites W2085045111 @default.
- W2794128247 cites W2098746581 @default.
- W2794128247 cites W2103441770 @default.
- W2794128247 cites W2104374250 @default.
- W2794128247 cites W2113687561 @default.
- W2794128247 cites W2119387367 @default.
- W2794128247 cites W2133462977 @default.
- W2794128247 cites W2138601221 @default.
- W2794128247 cites W2158143121 @default.
- W2794128247 cites W2158842434 @default.
- W2794128247 cites W2160995259 @default.
- W2794128247 cites W2169468746 @default.
- W2794128247 cites W2217416385 @default.
- W2794128247 cites W2219266818 @default.
- W2794128247 cites W2283013536 @default.
- W2794128247 cites W2296802087 @default.
- W2794128247 cites W2304422002 @default.
- W2794128247 cites W2323851578 @default.
- W2794128247 cites W2396849069 @default.
- W2794128247 cites W2417483443 @default.
- W2794128247 cites W2510622385 @default.
- W2794128247 cites W2574978968 @default.
- W2794128247 cites W2591514928 @default.
- W2794128247 cites W2607075141 @default.
- W2794128247 cites W2611720143 @default.
- W2794128247 cites W2613362156 @default.
- W2794128247 cites W2726758627 @default.
- W2794128247 cites W2728239371 @default.
- W2794128247 cites W2733549015 @default.
- W2794128247 cites W2738034871 @default.
- W2794128247 cites W2744868300 @default.
- W2794128247 cites W2770203518 @default.
- W2794128247 cites W3098977020 @default.
- W2794128247 cites W3104887532 @default.
- W2794128247 doi "https://doi.org/10.1200/cci.16.00079" @default.
- W2794128247 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6198661" @default.
- W2794128247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30364844" @default.
- W2794128247 hasPublicationYear "2018" @default.
- W2794128247 type Work @default.
- W2794128247 sameAs 2794128247 @default.
- W2794128247 citedByCount "13" @default.
- W2794128247 countsByYear W27941282472019 @default.
- W2794128247 countsByYear W27941282472020 @default.
- W2794128247 countsByYear W27941282472021 @default.
- W2794128247 countsByYear W27941282472022 @default.
- W2794128247 countsByYear W27941282472023 @default.
- W2794128247 crossrefType "journal-article" @default.
- W2794128247 hasAuthorship W2794128247A5006018613 @default.
- W2794128247 hasAuthorship W2794128247A5009341433 @default.
- W2794128247 hasAuthorship W2794128247A5013257322 @default.
- W2794128247 hasAuthorship W2794128247A5013557904 @default.
- W2794128247 hasAuthorship W2794128247A5019236595 @default.
- W2794128247 hasAuthorship W2794128247A5031670445 @default.
- W2794128247 hasAuthorship W2794128247A5032840354 @default.
- W2794128247 hasAuthorship W2794128247A5033765545 @default.
- W2794128247 hasAuthorship W2794128247A5038769490 @default.
- W2794128247 hasAuthorship W2794128247A5054045807 @default.
- W2794128247 hasAuthorship W2794128247A5056275493 @default.
- W2794128247 hasAuthorship W2794128247A5058736332 @default.
- W2794128247 hasAuthorship W2794128247A5067299042 @default.
- W2794128247 hasAuthorship W2794128247A5078592778 @default.
- W2794128247 hasAuthorship W2794128247A5078810229 @default.
- W2794128247 hasBestOaLocation W27941282471 @default.
- W2794128247 hasConcept C119857082 @default.
- W2794128247 hasConcept C12267149 @default.
- W2794128247 hasConcept C124101348 @default.
- W2794128247 hasConcept C151956035 @default.
- W2794128247 hasConcept C154945302 @default.
- W2794128247 hasConcept C169258074 @default.