Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794173658> ?p ?o ?g. }
- W2794173658 endingPage "29" @default.
- W2794173658 startingPage "1" @default.
- W2794173658 abstract "This chapter explores machine learning algorithms and makes them accessible for seeding drug discovery projects. It explores the authors's novel data pruning strategy when constructing Bayesian models to predict other types of properties. The chapter summarizes the application of the machine learning methods to toxicology datasets and transporters. Support vector machine (SVM) is one of the most popular supervised machine learning algorithms used mostly in classification problems and it is quite effective in high-dimensional spaces. The deep learning (DL) model is trained with a dataset by adjusting the weights to give the response expected for a certain input. The chapter compares deep neural networks (DNNs) and classic machine learning (CML) methods with different datasets of toxicological relevance for future embedding into the pen science data repository (OSDR). Collaborative Drug Discovery (CDD) model hosts the software and customers' data vaults on its secure servers." @default.
- W2794173658 created "2018-03-29" @default.
- W2794173658 creator A5016192450 @default.
- W2794173658 creator A5034678376 @default.
- W2794173658 creator A5044700909 @default.
- W2794173658 creator A5052699020 @default.
- W2794173658 creator A5070164801 @default.
- W2794173658 creator A5073973321 @default.
- W2794173658 date "2018-01-19" @default.
- W2794173658 modified "2023-09-27" @default.
- W2794173658 title "Accessible Machine Learning Approaches for Toxicology" @default.
- W2794173658 cites W1505417844 @default.
- W2794173658 cites W1577861479 @default.
- W2794173658 cites W1711639876 @default.
- W2794173658 cites W1967434540 @default.
- W2794173658 cites W1968135993 @default.
- W2794173658 cites W1972320695 @default.
- W2794173658 cites W1976892175 @default.
- W2794173658 cites W1982647101 @default.
- W2794173658 cites W1984678368 @default.
- W2794173658 cites W1984807385 @default.
- W2794173658 cites W1987118114 @default.
- W2794173658 cites W1990919689 @default.
- W2794173658 cites W1991985798 @default.
- W2794173658 cites W1995495408 @default.
- W2794173658 cites W1995573780 @default.
- W2794173658 cites W1998700502 @default.
- W2794173658 cites W1999020087 @default.
- W2794173658 cites W1999798000 @default.
- W2794173658 cites W2005263430 @default.
- W2794173658 cites W2007560618 @default.
- W2794173658 cites W2007705439 @default.
- W2794173658 cites W2012727065 @default.
- W2794173658 cites W2017843836 @default.
- W2794173658 cites W2021854653 @default.
- W2794173658 cites W2024311391 @default.
- W2794173658 cites W2035288789 @default.
- W2794173658 cites W2041133307 @default.
- W2794173658 cites W2041610798 @default.
- W2794173658 cites W2043214395 @default.
- W2794173658 cites W2045750428 @default.
- W2794173658 cites W2046613566 @default.
- W2794173658 cites W2049773909 @default.
- W2794173658 cites W2049911450 @default.
- W2794173658 cites W2050145466 @default.
- W2794173658 cites W2053076602 @default.
- W2794173658 cites W2053253524 @default.
- W2794173658 cites W2057069496 @default.
- W2794173658 cites W2060413154 @default.
- W2794173658 cites W2069444364 @default.
- W2794173658 cites W2070121517 @default.
- W2794173658 cites W2072813311 @default.
- W2794173658 cites W2076448934 @default.
- W2794173658 cites W2077946617 @default.
- W2794173658 cites W2081770014 @default.
- W2794173658 cites W2085507946 @default.
- W2794173658 cites W2087908817 @default.
- W2794173658 cites W2094568831 @default.
- W2794173658 cites W2096859872 @default.
- W2794173658 cites W2098889731 @default.
- W2794173658 cites W2099538400 @default.
- W2794173658 cites W2099949138 @default.
- W2794173658 cites W2110575201 @default.
- W2794173658 cites W2110820547 @default.
- W2794173658 cites W2115544494 @default.
- W2794173658 cites W2116652199 @default.
- W2794173658 cites W2118689184 @default.
- W2794173658 cites W2120349335 @default.
- W2794173658 cites W2125792789 @default.
- W2794173658 cites W2125852843 @default.
- W2794173658 cites W2137653635 @default.
- W2794173658 cites W2138972881 @default.
- W2794173658 cites W2139176209 @default.
- W2794173658 cites W2142565532 @default.
- W2794173658 cites W2148244985 @default.
- W2794173658 cites W2149675395 @default.
- W2794173658 cites W2152841520 @default.
- W2794173658 cites W2159266419 @default.
- W2794173658 cites W2159486360 @default.
- W2794173658 cites W2162415170 @default.
- W2794173658 cites W2167773607 @default.
- W2794173658 cites W2168447130 @default.
- W2794173658 cites W2171398711 @default.
- W2794173658 cites W2171660521 @default.
- W2794173658 cites W2171830166 @default.
- W2794173658 cites W2176736116 @default.
- W2794173658 cites W2179414561 @default.
- W2794173658 cites W2213443318 @default.
- W2794173658 cites W2234569175 @default.
- W2794173658 cites W2306570595 @default.
- W2794173658 cites W2322262466 @default.
- W2794173658 cites W2398288423 @default.
- W2794173658 cites W2401677822 @default.
- W2794173658 cites W2436108096 @default.
- W2794173658 cites W2502949459 @default.
- W2794173658 cites W2556851635 @default.
- W2794173658 cites W2919115771 @default.
- W2794173658 cites W3021575798 @default.