Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794192114> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2794192114 endingPage "042025" @default.
- W2794192114 startingPage "042025" @default.
- W2794192114 abstract "The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best." @default.
- W2794192114 created "2018-03-29" @default.
- W2794192114 creator A5002535516 @default.
- W2794192114 creator A5008171524 @default.
- W2794192114 creator A5031517911 @default.
- W2794192114 date "2018-01-01" @default.
- W2794192114 modified "2023-09-28" @default.
- W2794192114 title "Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province" @default.
- W2794192114 cites W2051574590 @default.
- W2794192114 doi "https://doi.org/10.1088/1755-1315/108/4/042025" @default.
- W2794192114 hasPublicationYear "2018" @default.
- W2794192114 type Work @default.
- W2794192114 sameAs 2794192114 @default.
- W2794192114 citedByCount "1" @default.
- W2794192114 countsByYear W27941921142022 @default.
- W2794192114 crossrefType "journal-article" @default.
- W2794192114 hasAuthorship W2794192114A5002535516 @default.
- W2794192114 hasAuthorship W2794192114A5008171524 @default.
- W2794192114 hasAuthorship W2794192114A5031517911 @default.
- W2794192114 hasBestOaLocation W27941921141 @default.
- W2794192114 hasConcept C127413603 @default.
- W2794192114 hasConcept C134306372 @default.
- W2794192114 hasConcept C159078339 @default.
- W2794192114 hasConcept C159390177 @default.
- W2794192114 hasConcept C178790620 @default.
- W2794192114 hasConcept C185592680 @default.
- W2794192114 hasConcept C201995342 @default.
- W2794192114 hasConcept C205649164 @default.
- W2794192114 hasConcept C2778152352 @default.
- W2794192114 hasConcept C33923547 @default.
- W2794192114 hasConcept C39432304 @default.
- W2794192114 hasConcept C537208039 @default.
- W2794192114 hasConcept C62649853 @default.
- W2794192114 hasConcept C96250715 @default.
- W2794192114 hasConceptScore W2794192114C127413603 @default.
- W2794192114 hasConceptScore W2794192114C134306372 @default.
- W2794192114 hasConceptScore W2794192114C159078339 @default.
- W2794192114 hasConceptScore W2794192114C159390177 @default.
- W2794192114 hasConceptScore W2794192114C178790620 @default.
- W2794192114 hasConceptScore W2794192114C185592680 @default.
- W2794192114 hasConceptScore W2794192114C201995342 @default.
- W2794192114 hasConceptScore W2794192114C205649164 @default.
- W2794192114 hasConceptScore W2794192114C2778152352 @default.
- W2794192114 hasConceptScore W2794192114C33923547 @default.
- W2794192114 hasConceptScore W2794192114C39432304 @default.
- W2794192114 hasConceptScore W2794192114C537208039 @default.
- W2794192114 hasConceptScore W2794192114C62649853 @default.
- W2794192114 hasConceptScore W2794192114C96250715 @default.
- W2794192114 hasLocation W27941921141 @default.
- W2794192114 hasOpenAccess W2794192114 @default.
- W2794192114 hasPrimaryLocation W27941921141 @default.
- W2794192114 hasRelatedWork W2052350602 @default.
- W2794192114 hasRelatedWork W2065968650 @default.
- W2794192114 hasRelatedWork W2168101577 @default.
- W2794192114 hasRelatedWork W2353682515 @default.
- W2794192114 hasRelatedWork W2359762355 @default.
- W2794192114 hasRelatedWork W2362667440 @default.
- W2794192114 hasRelatedWork W2381398885 @default.
- W2794192114 hasRelatedWork W2604170666 @default.
- W2794192114 hasRelatedWork W301969955 @default.
- W2794192114 hasRelatedWork W3186906386 @default.
- W2794192114 hasVolume "108" @default.
- W2794192114 isParatext "false" @default.
- W2794192114 isRetracted "false" @default.
- W2794192114 magId "2794192114" @default.
- W2794192114 workType "article" @default.