Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794251036> ?p ?o ?g. }
- W2794251036 endingPage "13" @default.
- W2794251036 startingPage "1" @default.
- W2794251036 abstract "This paper considers parameter estimation of a new coupled mixture of polynomial phase signal (PPS) and sinusoidal frequency modulated (FM) signal, recently introduced for industrial systems such as linear electromagnatic encoders. Compared with both conventional PPS-only and independent mixture models, the coupled mixture one captures the coupling between the sinusoidal FM frequency and the PPS parameters induced by structural system configurations. In this paper, we are particularly interested in estimating phase parameters of the coupled mixture signal at low signal-to-noise ratios (SNRs). Specifically, we propose a three-stage approach consisting of instantaneous frequency (IF) extraction (e.g., the short-time Fourier transform) and refining steps that reduce the bias introduced by the IF estimation and the mean-squared errors (MSEs) up to the Cramér-Rao bound (CRB). The proposed method is numerically compared with an existing phase-based approach as well as corresponding CRBs in terms of the empirical MSE. The results show that, compared with the phase-based approach, the proposed method can significantly lower the SNR threshold. The convergence of the measured MSEs from the initial stage to the latter refining stages is also numerically evaluated." @default.
- W2794251036 created "2018-03-29" @default.
- W2794251036 creator A5011621698 @default.
- W2794251036 creator A5017674309 @default.
- W2794251036 creator A5040899817 @default.
- W2794251036 creator A5044769104 @default.
- W2794251036 date "2018-08-01" @default.
- W2794251036 modified "2023-10-18" @default.
- W2794251036 title "Parameter estimation of coupled polynomial phase and sinusoidal FM signals" @default.
- W2794251036 cites W1981142889 @default.
- W2794251036 cites W1989421945 @default.
- W2794251036 cites W1990546652 @default.
- W2794251036 cites W1992753778 @default.
- W2794251036 cites W2030771094 @default.
- W2794251036 cites W2034018890 @default.
- W2794251036 cites W2036544393 @default.
- W2794251036 cites W2058973663 @default.
- W2794251036 cites W2059608637 @default.
- W2794251036 cites W2065882190 @default.
- W2794251036 cites W2095998969 @default.
- W2794251036 cites W2097157716 @default.
- W2794251036 cites W2099284475 @default.
- W2794251036 cites W2101280854 @default.
- W2794251036 cites W2103781067 @default.
- W2794251036 cites W2107706554 @default.
- W2794251036 cites W2110400683 @default.
- W2794251036 cites W2115541274 @default.
- W2794251036 cites W2117546853 @default.
- W2794251036 cites W2121942426 @default.
- W2794251036 cites W2137919732 @default.
- W2794251036 cites W2138355218 @default.
- W2794251036 cites W2139106846 @default.
- W2794251036 cites W2148427361 @default.
- W2794251036 cites W2150013131 @default.
- W2794251036 cites W2150092696 @default.
- W2794251036 cites W2153036761 @default.
- W2794251036 cites W2158473931 @default.
- W2794251036 cites W2161578447 @default.
- W2794251036 cites W2162267159 @default.
- W2794251036 cites W2165394398 @default.
- W2794251036 cites W2525635407 @default.
- W2794251036 cites W2548986258 @default.
- W2794251036 cites W2561080555 @default.
- W2794251036 cites W2564221873 @default.
- W2794251036 cites W2588612101 @default.
- W2794251036 cites W2761468564 @default.
- W2794251036 doi "https://doi.org/10.1016/j.sigpro.2018.02.023" @default.
- W2794251036 hasPublicationYear "2018" @default.
- W2794251036 type Work @default.
- W2794251036 sameAs 2794251036 @default.
- W2794251036 citedByCount "9" @default.
- W2794251036 countsByYear W27942510362019 @default.
- W2794251036 countsByYear W27942510362020 @default.
- W2794251036 countsByYear W27942510362021 @default.
- W2794251036 countsByYear W27942510362022 @default.
- W2794251036 countsByYear W27942510362023 @default.
- W2794251036 crossrefType "journal-article" @default.
- W2794251036 hasAuthorship W2794251036A5011621698 @default.
- W2794251036 hasAuthorship W2794251036A5017674309 @default.
- W2794251036 hasAuthorship W2794251036A5040899817 @default.
- W2794251036 hasAuthorship W2794251036A5044769104 @default.
- W2794251036 hasConcept C102519508 @default.
- W2794251036 hasConcept C105795698 @default.
- W2794251036 hasConcept C106131492 @default.
- W2794251036 hasConcept C11413529 @default.
- W2794251036 hasConcept C115961682 @default.
- W2794251036 hasConcept C121332964 @default.
- W2794251036 hasConcept C127413603 @default.
- W2794251036 hasConcept C131584629 @default.
- W2794251036 hasConcept C134306372 @default.
- W2794251036 hasConcept C137798554 @default.
- W2794251036 hasConcept C139945424 @default.
- W2794251036 hasConcept C154945302 @default.
- W2794251036 hasConcept C167928553 @default.
- W2794251036 hasConcept C199360897 @default.
- W2794251036 hasConcept C2775924081 @default.
- W2794251036 hasConcept C2779843651 @default.
- W2794251036 hasConcept C31972630 @default.
- W2794251036 hasConcept C33923547 @default.
- W2794251036 hasConcept C41008148 @default.
- W2794251036 hasConcept C44280652 @default.
- W2794251036 hasConcept C47446073 @default.
- W2794251036 hasConcept C62520636 @default.
- W2794251036 hasConcept C78519656 @default.
- W2794251036 hasConcept C90119067 @default.
- W2794251036 hasConcept C99498987 @default.
- W2794251036 hasConceptScore W2794251036C102519508 @default.
- W2794251036 hasConceptScore W2794251036C105795698 @default.
- W2794251036 hasConceptScore W2794251036C106131492 @default.
- W2794251036 hasConceptScore W2794251036C11413529 @default.
- W2794251036 hasConceptScore W2794251036C115961682 @default.
- W2794251036 hasConceptScore W2794251036C121332964 @default.
- W2794251036 hasConceptScore W2794251036C127413603 @default.
- W2794251036 hasConceptScore W2794251036C131584629 @default.
- W2794251036 hasConceptScore W2794251036C134306372 @default.
- W2794251036 hasConceptScore W2794251036C137798554 @default.
- W2794251036 hasConceptScore W2794251036C139945424 @default.
- W2794251036 hasConceptScore W2794251036C154945302 @default.