Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794295488> ?p ?o ?g. }
- W2794295488 endingPage "1998" @default.
- W2794295488 startingPage "1985" @default.
- W2794295488 abstract "Smart grid (SG) is an integration of traditional power grid with advanced information and communication infrastructure for bidirectional energy flow between grid and end users. A huge amount of data is being generated by various smart devices deployed in SG systems. Such a massive data generation from various smart devices in SG systems may lead to various challenges for the networking infrastructure deployed between users and the grid. Hence, an efficient data transmission technique is required for providing desired QoS to the end users in this environment. Generally, the data generated by smart devices in SG has high dimensions in the form of multiple heterogeneous attributes, values of which are changed with time. The high dimensions of data may affect the performance of most of the designed solutions in this environment. Most of the existing schemes reported in the literature have complex operations for the data dimensionality reduction problem which may deteriorate the performance of any implemented solution for this problem. To address these challenges, in this paper, a tensor-based big data management scheme is proposed for dimensionality reduction problem of big data generated from various smart devices. In the proposed scheme, first the Frobenius norm is applied on high-order-tensors (used for data representation) to minimize the reconstruction error of the reduced tensors. Then, an empirical probability-based control algorithm is designed to estimate an optimal path to forward the reduced data using software-defined networks for minimization of the network load and effective bandwidth utilization. The proposed scheme minimizes the transmission delay incurred during the movement of the dimensionally reduced data between different nodes. The efficacy of the proposed scheme has been evaluated using extensive simulations carried out on the data traces using `R' programming and Matlab. The big data traces considered for evaluation consist of more than two million entries (2,075,259) collected at one minute sampling rate having hetrogenous features such as-voltage, energy, frequency, electric signals, etc. Moreover, a comparative study for different data traces and a real SG testbed is also presented to prove the efficacy of the proposed scheme. The results obtained depict the effectiveness of the proposed scheme with respect to the parameters such asnetwork delay, accuracy, and throughput." @default.
- W2794295488 created "2018-03-29" @default.
- W2794295488 creator A5015993565 @default.
- W2794295488 creator A5036704324 @default.
- W2794295488 creator A5056940320 @default.
- W2794295488 creator A5060972706 @default.
- W2794295488 creator A5067033094 @default.
- W2794295488 creator A5078821851 @default.
- W2794295488 date "2018-10-01" @default.
- W2794295488 modified "2023-10-02" @default.
- W2794295488 title "Tensor-Based Big Data Management Scheme for Dimensionality Reduction Problem in Smart Grid Systems: SDN Perspective" @default.
- W2794295488 cites W1802314291 @default.
- W2794295488 cites W2013912476 @default.
- W2794295488 cites W2018067627 @default.
- W2794295488 cites W2022758041 @default.
- W2794295488 cites W2024165284 @default.
- W2794295488 cites W2028788479 @default.
- W2794295488 cites W2040340473 @default.
- W2794295488 cites W2042810301 @default.
- W2794295488 cites W2045125148 @default.
- W2794295488 cites W2066494671 @default.
- W2794295488 cites W2069354103 @default.
- W2794295488 cites W2119866123 @default.
- W2794295488 cites W2125560635 @default.
- W2794295488 cites W2127949350 @default.
- W2794295488 cites W2135846084 @default.
- W2794295488 cites W2147118406 @default.
- W2794295488 cites W2150093579 @default.
- W2794295488 cites W2156125143 @default.
- W2794295488 cites W2272206587 @default.
- W2794295488 cites W2276802311 @default.
- W2794295488 cites W2280094791 @default.
- W2794295488 cites W2333073311 @default.
- W2794295488 cites W2342601507 @default.
- W2794295488 cites W2342900032 @default.
- W2794295488 cites W2379385123 @default.
- W2794295488 cites W2415028958 @default.
- W2794295488 cites W2469044795 @default.
- W2794295488 cites W2526315988 @default.
- W2794295488 cites W2585453141 @default.
- W2794295488 cites W2588858292 @default.
- W2794295488 cites W2738925815 @default.
- W2794295488 cites W2742631220 @default.
- W2794295488 cites W2743321735 @default.
- W2794295488 cites W2760390290 @default.
- W2794295488 cites W2764299998 @default.
- W2794295488 cites W2785346526 @default.
- W2794295488 cites W2787444476 @default.
- W2794295488 cites W3103646328 @default.
- W2794295488 doi "https://doi.org/10.1109/tkde.2018.2809747" @default.
- W2794295488 hasPublicationYear "2018" @default.
- W2794295488 type Work @default.
- W2794295488 sameAs 2794295488 @default.
- W2794295488 citedByCount "74" @default.
- W2794295488 countsByYear W27942954882018 @default.
- W2794295488 countsByYear W27942954882019 @default.
- W2794295488 countsByYear W27942954882020 @default.
- W2794295488 countsByYear W27942954882021 @default.
- W2794295488 countsByYear W27942954882022 @default.
- W2794295488 countsByYear W27942954882023 @default.
- W2794295488 crossrefType "journal-article" @default.
- W2794295488 hasAuthorship W2794295488A5015993565 @default.
- W2794295488 hasAuthorship W2794295488A5036704324 @default.
- W2794295488 hasAuthorship W2794295488A5056940320 @default.
- W2794295488 hasAuthorship W2794295488A5060972706 @default.
- W2794295488 hasAuthorship W2794295488A5067033094 @default.
- W2794295488 hasAuthorship W2794295488A5078821851 @default.
- W2794295488 hasBestOaLocation W27942954882 @default.
- W2794295488 hasConcept C10558101 @default.
- W2794295488 hasConcept C120314980 @default.
- W2794295488 hasConcept C124101348 @default.
- W2794295488 hasConcept C154945302 @default.
- W2794295488 hasConcept C187691185 @default.
- W2794295488 hasConcept C18903297 @default.
- W2794295488 hasConcept C2524010 @default.
- W2794295488 hasConcept C33923547 @default.
- W2794295488 hasConcept C41008148 @default.
- W2794295488 hasConcept C70518039 @default.
- W2794295488 hasConcept C75684735 @default.
- W2794295488 hasConcept C79403827 @default.
- W2794295488 hasConcept C86803240 @default.
- W2794295488 hasConceptScore W2794295488C10558101 @default.
- W2794295488 hasConceptScore W2794295488C120314980 @default.
- W2794295488 hasConceptScore W2794295488C124101348 @default.
- W2794295488 hasConceptScore W2794295488C154945302 @default.
- W2794295488 hasConceptScore W2794295488C187691185 @default.
- W2794295488 hasConceptScore W2794295488C18903297 @default.
- W2794295488 hasConceptScore W2794295488C2524010 @default.
- W2794295488 hasConceptScore W2794295488C33923547 @default.
- W2794295488 hasConceptScore W2794295488C41008148 @default.
- W2794295488 hasConceptScore W2794295488C70518039 @default.
- W2794295488 hasConceptScore W2794295488C75684735 @default.
- W2794295488 hasConceptScore W2794295488C79403827 @default.
- W2794295488 hasConceptScore W2794295488C86803240 @default.
- W2794295488 hasIssue "10" @default.
- W2794295488 hasLocation W27942954881 @default.
- W2794295488 hasLocation W27942954882 @default.
- W2794295488 hasLocation W27942954883 @default.