Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794327812> ?p ?o ?g. }
- W2794327812 endingPage "287" @default.
- W2794327812 startingPage "276" @default.
- W2794327812 abstract "This paper considers the problem of forecasting realized variance measures. These measures are highly persistent estimates of the underlying integrated variance, but are also noisy. Bollerslev, Patton and Quaedvlieg (2016), Journal of Econometrics 192(1), 1–18 exploited this so as to extend the commonly used heterogeneous autoregressive (HAR) by letting the model parameters vary over time depending on the estimated measurement error variances. We propose an alternative specification that allows the autoregressive parameters of HAR models to be driven by a latent Gaussian autoregressive process that may also depend on the estimated measurement error variance. The model parameters are estimated by maximum likelihood using the Kalman filter. Our empirical analysis considers the realized variances of 40 stocks from the S&P 500. Our model based on log variances shows the best overall performance and generates superior forecasts both in terms of a range of different loss functions and for various subsamples of the forecasting period." @default.
- W2794327812 created "2018-03-29" @default.
- W2794327812 creator A5031411393 @default.
- W2794327812 creator A5059467594 @default.
- W2794327812 date "2018-04-01" @default.
- W2794327812 modified "2023-10-14" @default.
- W2794327812 title "Forecasting realized variance measures using time-varying coefficient models" @default.
- W2794327812 cites W1979575715 @default.
- W2794327812 cites W1999996900 @default.
- W2794327812 cites W2000829673 @default.
- W2794327812 cites W2018090882 @default.
- W2794327812 cites W2034906991 @default.
- W2794327812 cites W2051235503 @default.
- W2794327812 cites W2066815740 @default.
- W2794327812 cites W2068138154 @default.
- W2794327812 cites W2069601141 @default.
- W2794327812 cites W2094006360 @default.
- W2794327812 cites W2109263931 @default.
- W2794327812 cites W2125536334 @default.
- W2794327812 cites W2126434678 @default.
- W2794327812 cites W2128569377 @default.
- W2794327812 cites W2140585983 @default.
- W2794327812 cites W2146134639 @default.
- W2794327812 cites W2158595111 @default.
- W2794327812 cites W2336157179 @default.
- W2794327812 cites W3023429964 @default.
- W2794327812 cites W3095114851 @default.
- W2794327812 cites W3121364726 @default.
- W2794327812 cites W3121532596 @default.
- W2794327812 cites W3123351111 @default.
- W2794327812 cites W3124026849 @default.
- W2794327812 cites W3125037581 @default.
- W2794327812 cites W3125987794 @default.
- W2794327812 cites W4299952561 @default.
- W2794327812 doi "https://doi.org/10.1016/j.ijforecast.2017.12.005" @default.
- W2794327812 hasPublicationYear "2018" @default.
- W2794327812 type Work @default.
- W2794327812 sameAs 2794327812 @default.
- W2794327812 citedByCount "26" @default.
- W2794327812 countsByYear W27943278122018 @default.
- W2794327812 countsByYear W27943278122019 @default.
- W2794327812 countsByYear W27943278122020 @default.
- W2794327812 countsByYear W27943278122021 @default.
- W2794327812 countsByYear W27943278122022 @default.
- W2794327812 countsByYear W27943278122023 @default.
- W2794327812 crossrefType "journal-article" @default.
- W2794327812 hasAuthorship W2794327812A5031411393 @default.
- W2794327812 hasAuthorship W2794327812A5059467594 @default.
- W2794327812 hasConcept C105795698 @default.
- W2794327812 hasConcept C121332964 @default.
- W2794327812 hasConcept C121955636 @default.
- W2794327812 hasConcept C149782125 @default.
- W2794327812 hasConcept C157286648 @default.
- W2794327812 hasConcept C159877910 @default.
- W2794327812 hasConcept C159985019 @default.
- W2794327812 hasConcept C162324750 @default.
- W2794327812 hasConcept C163716315 @default.
- W2794327812 hasConcept C192562407 @default.
- W2794327812 hasConcept C196083921 @default.
- W2794327812 hasConcept C19619285 @default.
- W2794327812 hasConcept C204323151 @default.
- W2794327812 hasConcept C33923547 @default.
- W2794327812 hasConcept C41008148 @default.
- W2794327812 hasConcept C60092789 @default.
- W2794327812 hasConcept C62520636 @default.
- W2794327812 hasConcept C91602232 @default.
- W2794327812 hasConceptScore W2794327812C105795698 @default.
- W2794327812 hasConceptScore W2794327812C121332964 @default.
- W2794327812 hasConceptScore W2794327812C121955636 @default.
- W2794327812 hasConceptScore W2794327812C149782125 @default.
- W2794327812 hasConceptScore W2794327812C157286648 @default.
- W2794327812 hasConceptScore W2794327812C159877910 @default.
- W2794327812 hasConceptScore W2794327812C159985019 @default.
- W2794327812 hasConceptScore W2794327812C162324750 @default.
- W2794327812 hasConceptScore W2794327812C163716315 @default.
- W2794327812 hasConceptScore W2794327812C192562407 @default.
- W2794327812 hasConceptScore W2794327812C196083921 @default.
- W2794327812 hasConceptScore W2794327812C19619285 @default.
- W2794327812 hasConceptScore W2794327812C204323151 @default.
- W2794327812 hasConceptScore W2794327812C33923547 @default.
- W2794327812 hasConceptScore W2794327812C41008148 @default.
- W2794327812 hasConceptScore W2794327812C60092789 @default.
- W2794327812 hasConceptScore W2794327812C62520636 @default.
- W2794327812 hasConceptScore W2794327812C91602232 @default.
- W2794327812 hasIssue "2" @default.
- W2794327812 hasLocation W27943278121 @default.
- W2794327812 hasOpenAccess W2794327812 @default.
- W2794327812 hasPrimaryLocation W27943278121 @default.
- W2794327812 hasRelatedWork W1761087292 @default.
- W2794327812 hasRelatedWork W2745293173 @default.
- W2794327812 hasRelatedWork W2754066691 @default.
- W2794327812 hasRelatedWork W2808790646 @default.
- W2794327812 hasRelatedWork W2964389519 @default.
- W2794327812 hasRelatedWork W3028282378 @default.
- W2794327812 hasRelatedWork W3082824610 @default.
- W2794327812 hasRelatedWork W3122147302 @default.
- W2794327812 hasRelatedWork W3124539747 @default.
- W2794327812 hasRelatedWork W3174303953 @default.