Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794488702> ?p ?o ?g. }
- W2794488702 endingPage "27" @default.
- W2794488702 startingPage "17" @default.
- W2794488702 abstract "In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy (AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals (calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid (e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe2+ ions that subsequently become oxidized and then precipitate in the form of FeIII oxyhydroxides. For dolomite and magnesite, dissolution in the presence of pure water (undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution, the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system." @default.
- W2794488702 created "2018-04-06" @default.
- W2794488702 creator A5001266610 @default.
- W2794488702 creator A5037742614 @default.
- W2794488702 creator A5071982975 @default.
- W2794488702 date "2019-01-01" @default.
- W2794488702 modified "2023-10-18" @default.
- W2794488702 title "Timescales of interface-coupled dissolution-precipitation reactions on carbonates" @default.
- W2794488702 cites W1567716618 @default.
- W2794488702 cites W1643676121 @default.
- W2794488702 cites W174017899 @default.
- W2794488702 cites W1980645312 @default.
- W2794488702 cites W1987285774 @default.
- W2794488702 cites W1990250430 @default.
- W2794488702 cites W1992191754 @default.
- W2794488702 cites W1992385067 @default.
- W2794488702 cites W1992624022 @default.
- W2794488702 cites W1999115302 @default.
- W2794488702 cites W2001536668 @default.
- W2794488702 cites W2008292009 @default.
- W2794488702 cites W2016849628 @default.
- W2794488702 cites W2018612157 @default.
- W2794488702 cites W2018954402 @default.
- W2794488702 cites W2019726087 @default.
- W2794488702 cites W2029197582 @default.
- W2794488702 cites W2032417589 @default.
- W2794488702 cites W2033497548 @default.
- W2794488702 cites W2048109216 @default.
- W2794488702 cites W2048210508 @default.
- W2794488702 cites W2051819960 @default.
- W2794488702 cites W2056627274 @default.
- W2794488702 cites W2070375734 @default.
- W2794488702 cites W2077225726 @default.
- W2794488702 cites W2085458788 @default.
- W2794488702 cites W2096161879 @default.
- W2794488702 cites W2098962952 @default.
- W2794488702 cites W2100194516 @default.
- W2794488702 cites W2104872273 @default.
- W2794488702 cites W2109346290 @default.
- W2794488702 cites W2111622012 @default.
- W2794488702 cites W2120537050 @default.
- W2794488702 cites W2121485386 @default.
- W2794488702 cites W2125585387 @default.
- W2794488702 cites W2126161752 @default.
- W2794488702 cites W2152761582 @default.
- W2794488702 cites W2172127771 @default.
- W2794488702 cites W2272081710 @default.
- W2794488702 cites W2317710535 @default.
- W2794488702 cites W2328950653 @default.
- W2794488702 cites W2423492156 @default.
- W2794488702 cites W2557597598 @default.
- W2794488702 cites W2626719070 @default.
- W2794488702 cites W2766127968 @default.
- W2794488702 cites W2774978077 @default.
- W2794488702 cites W4235557068 @default.
- W2794488702 doi "https://doi.org/10.1016/j.gsf.2018.02.013" @default.
- W2794488702 hasPublicationYear "2019" @default.
- W2794488702 type Work @default.
- W2794488702 sameAs 2794488702 @default.
- W2794488702 citedByCount "30" @default.
- W2794488702 countsByYear W27944887022018 @default.
- W2794488702 countsByYear W27944887022020 @default.
- W2794488702 countsByYear W27944887022021 @default.
- W2794488702 countsByYear W27944887022022 @default.
- W2794488702 countsByYear W27944887022023 @default.
- W2794488702 crossrefType "journal-article" @default.
- W2794488702 hasAuthorship W2794488702A5001266610 @default.
- W2794488702 hasAuthorship W2794488702A5037742614 @default.
- W2794488702 hasAuthorship W2794488702A5071982975 @default.
- W2794488702 hasBestOaLocation W27944887021 @default.
- W2794488702 hasConcept C107054158 @default.
- W2794488702 hasConcept C121332964 @default.
- W2794488702 hasConcept C127313418 @default.
- W2794488702 hasConcept C127413603 @default.
- W2794488702 hasConcept C147789679 @default.
- W2794488702 hasConcept C153294291 @default.
- W2794488702 hasConcept C178790620 @default.
- W2794488702 hasConcept C179104552 @default.
- W2794488702 hasConcept C185592680 @default.
- W2794488702 hasConcept C199289684 @default.
- W2794488702 hasConcept C2776432453 @default.
- W2794488702 hasConcept C2776597492 @default.
- W2794488702 hasConcept C2778572594 @default.
- W2794488702 hasConcept C2779002002 @default.
- W2794488702 hasConcept C2779117930 @default.
- W2794488702 hasConcept C2780181037 @default.
- W2794488702 hasConcept C2780191791 @default.
- W2794488702 hasConcept C2780659211 @default.
- W2794488702 hasConcept C42360764 @default.
- W2794488702 hasConcept C543218039 @default.
- W2794488702 hasConcept C88380143 @default.
- W2794488702 hasConceptScore W2794488702C107054158 @default.
- W2794488702 hasConceptScore W2794488702C121332964 @default.
- W2794488702 hasConceptScore W2794488702C127313418 @default.
- W2794488702 hasConceptScore W2794488702C127413603 @default.
- W2794488702 hasConceptScore W2794488702C147789679 @default.
- W2794488702 hasConceptScore W2794488702C153294291 @default.
- W2794488702 hasConceptScore W2794488702C178790620 @default.