Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794518994> ?p ?o ?g. }
- W2794518994 endingPage "1480" @default.
- W2794518994 startingPage "1472" @default.
- W2794518994 abstract "As radiology is inherently a data-driven specialty, it is especially conducive to utilizing data processing techniques. One such technique, deep learning (DL), has become a remarkably powerful tool for image processing in recent years. In this work, the Association of University Radiologists Radiology Research Alliance Task Force on Deep Learning provides an overview of DL for the radiologist. This article aims to present an overview of DL in a manner that is understandable to radiologists; to examine past, present, and future applications; as well as to evaluate how radiologists may benefit from this remarkable new tool. We describe several areas within radiology in which DL techniques are having the most significant impact: lesion or disease detection, classification, quantification, and segmentation. The legal and ethical hurdles to implementation are also discussed. By taking advantage of this powerful tool, radiologists can become increasingly more accurate in their interpretations with fewer errors and spend more time to focus on patient care." @default.
- W2794518994 created "2018-04-06" @default.
- W2794518994 creator A5005063106 @default.
- W2794518994 creator A5033257236 @default.
- W2794518994 creator A5041099428 @default.
- W2794518994 creator A5064037990 @default.
- W2794518994 creator A5070245489 @default.
- W2794518994 creator A5077077849 @default.
- W2794518994 creator A5084295836 @default.
- W2794518994 creator A5085188789 @default.
- W2794518994 date "2018-11-01" @default.
- W2794518994 modified "2023-10-16" @default.
- W2794518994 title "Deep Learning in Radiology" @default.
- W2794518994 cites W1974194690 @default.
- W2794518994 cites W1977232575 @default.
- W2794518994 cites W1987054640 @default.
- W2794518994 cites W2003304826 @default.
- W2794518994 cites W2016621860 @default.
- W2794518994 cites W2044465660 @default.
- W2794518994 cites W2069816479 @default.
- W2794518994 cites W2076063813 @default.
- W2794518994 cites W2153563443 @default.
- W2794518994 cites W2161742217 @default.
- W2794518994 cites W2323929895 @default.
- W2794518994 cites W2340915558 @default.
- W2794518994 cites W2341106171 @default.
- W2794518994 cites W2409650203 @default.
- W2794518994 cites W2466438457 @default.
- W2794518994 cites W2478760458 @default.
- W2794518994 cites W2493683088 @default.
- W2794518994 cites W2510224130 @default.
- W2794518994 cites W2524399695 @default.
- W2794518994 cites W2527037992 @default.
- W2794518994 cites W2554181966 @default.
- W2794518994 cites W2556470218 @default.
- W2794518994 cites W2557738935 @default.
- W2794518994 cites W2581082771 @default.
- W2794518994 cites W2588896082 @default.
- W2794518994 cites W2608231518 @default.
- W2794518994 cites W2613475099 @default.
- W2794518994 cites W2621028221 @default.
- W2794518994 cites W2623880299 @default.
- W2794518994 cites W2911296969 @default.
- W2794518994 cites W3104258355 @default.
- W2794518994 doi "https://doi.org/10.1016/j.acra.2018.02.018" @default.
- W2794518994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29606338" @default.
- W2794518994 hasPublicationYear "2018" @default.
- W2794518994 type Work @default.
- W2794518994 sameAs 2794518994 @default.
- W2794518994 citedByCount "277" @default.
- W2794518994 countsByYear W27945189942018 @default.
- W2794518994 countsByYear W27945189942019 @default.
- W2794518994 countsByYear W27945189942020 @default.
- W2794518994 countsByYear W27945189942021 @default.
- W2794518994 countsByYear W27945189942022 @default.
- W2794518994 countsByYear W27945189942023 @default.
- W2794518994 crossrefType "journal-article" @default.
- W2794518994 hasAuthorship W2794518994A5005063106 @default.
- W2794518994 hasAuthorship W2794518994A5033257236 @default.
- W2794518994 hasAuthorship W2794518994A5041099428 @default.
- W2794518994 hasAuthorship W2794518994A5064037990 @default.
- W2794518994 hasAuthorship W2794518994A5070245489 @default.
- W2794518994 hasAuthorship W2794518994A5077077849 @default.
- W2794518994 hasAuthorship W2794518994A5084295836 @default.
- W2794518994 hasAuthorship W2794518994A5085188789 @default.
- W2794518994 hasBestOaLocation W27945189941 @default.
- W2794518994 hasConcept C108583219 @default.
- W2794518994 hasConcept C120665830 @default.
- W2794518994 hasConcept C121332964 @default.
- W2794518994 hasConcept C126838900 @default.
- W2794518994 hasConcept C142724271 @default.
- W2794518994 hasConcept C154945302 @default.
- W2794518994 hasConcept C162324750 @default.
- W2794518994 hasConcept C17744445 @default.
- W2794518994 hasConcept C187736073 @default.
- W2794518994 hasConcept C192209626 @default.
- W2794518994 hasConcept C19527891 @default.
- W2794518994 hasConcept C20387591 @default.
- W2794518994 hasConcept C2522767166 @default.
- W2794518994 hasConcept C2780451532 @default.
- W2794518994 hasConcept C2985871740 @default.
- W2794518994 hasConcept C3116431 @default.
- W2794518994 hasConcept C41008148 @default.
- W2794518994 hasConcept C71924100 @default.
- W2794518994 hasConcept C89600930 @default.
- W2794518994 hasConceptScore W2794518994C108583219 @default.
- W2794518994 hasConceptScore W2794518994C120665830 @default.
- W2794518994 hasConceptScore W2794518994C121332964 @default.
- W2794518994 hasConceptScore W2794518994C126838900 @default.
- W2794518994 hasConceptScore W2794518994C142724271 @default.
- W2794518994 hasConceptScore W2794518994C154945302 @default.
- W2794518994 hasConceptScore W2794518994C162324750 @default.
- W2794518994 hasConceptScore W2794518994C17744445 @default.
- W2794518994 hasConceptScore W2794518994C187736073 @default.
- W2794518994 hasConceptScore W2794518994C192209626 @default.
- W2794518994 hasConceptScore W2794518994C19527891 @default.
- W2794518994 hasConceptScore W2794518994C20387591 @default.
- W2794518994 hasConceptScore W2794518994C2522767166 @default.