Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794657861> ?p ?o ?g. }
- W2794657861 abstract "NAND flash memory density continues to scale to keep up with the increasing storage demands of data-intensive applications. Unfortunately, as a result of this scaling, the lifetime of NAND flash memory has been decreasing. Each cell in NAND flash memory can endure only a limited number of writes, due to the damage caused by each program and erase operation on the cell. This damage can be partially repaired on its own during the idle time between program or erase operations (known as the dwell time), via a phenomenon known as the self-recovery effect. Prior works study the self-recovery effect for planar (i.e., 2D) NAND flash memory, and propose to exploit it to improve flash lifetime, by applying high temperature to accelerate self-recovery. However, these findings may not be directly applicable to 3D NAND flash memory, due to significant changes in the design and manufacturing process that are required to enable practical 3D stacking for NAND flash memory. In this paper, we perform the first detailed experimental characterization of the effects of self-recovery and temperature on real, state-of-the-art 3D NAND flash memory devices. We show that these effects influence two major factors of NAND flash memory reliability: (1) retention loss speed (i.e., the speed at which a flash cell leaks charge), and (2) program variation (i.e., the difference in programming speed across flash cells). We find that self-recovery and temperature affect 3D NAND flash memory quite differently than they affect planar NAND flash memory, rendering prior models of self-recovery and temperature ineffective for 3D NAND flash memory. Using our characterization results, we develop a new model for 3D NAND flash memory reliability, which predicts how retention, wearout, self-recovery, and temperature affect raw bit error rates and cell threshold voltages. We show that our model is accurate, with an error of only 4.9%. Based on our experimental findings and our model, we propose HeatWatch, a new mechanism to improve 3D NAND flash memory reliability. The key idea of HeatWatch is to optimize the read reference voltage, i.e., the voltage applied to the cell during a read operation, by adapting it to the dwell time of the workload and the current operating temperature. HeatWatch (1) efficiently tracks flash memory temperature and dwell time online, (2) sends this information to our reliability model to predict the current voltages of flash cells, and (3) predicts the optimal read reference voltage based on the current cell voltages. Our detailed experimental evaluations show that HeatWatch improves flash lifetime by 3.85× over a baseline that uses a fixed read reference voltage, averaged across 28 real storage workload traces, and comes within 0.9% of the lifetime of an ideal read reference voltage selection mechanism." @default.
- W2794657861 created "2018-04-06" @default.
- W2794657861 creator A5035119688 @default.
- W2794657861 creator A5036666743 @default.
- W2794657861 creator A5050695684 @default.
- W2794657861 creator A5066465984 @default.
- W2794657861 creator A5067813792 @default.
- W2794657861 date "2018-02-01" @default.
- W2794657861 modified "2023-10-18" @default.
- W2794657861 title "HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness" @default.
- W2794657861 cites W1544971428 @default.
- W2794657861 cites W1608061514 @default.
- W2794657861 cites W1979804960 @default.
- W2794657861 cites W1987162413 @default.
- W2794657861 cites W2014536047 @default.
- W2794657861 cites W2022505779 @default.
- W2794657861 cites W2022636838 @default.
- W2794657861 cites W2047997537 @default.
- W2794657861 cites W2061367020 @default.
- W2794657861 cites W2063832396 @default.
- W2794657861 cites W2070425502 @default.
- W2794657861 cites W2099753358 @default.
- W2794657861 cites W2106035061 @default.
- W2794657861 cites W2109136771 @default.
- W2794657861 cites W2124570687 @default.
- W2794657861 cites W2139304324 @default.
- W2794657861 cites W2149359255 @default.
- W2794657861 cites W2156076822 @default.
- W2794657861 cites W2159533273 @default.
- W2794657861 cites W2160009697 @default.
- W2794657861 cites W2179360174 @default.
- W2794657861 cites W2181523240 @default.
- W2794657861 cites W2201220957 @default.
- W2794657861 cites W2256578114 @default.
- W2794657861 cites W2291026910 @default.
- W2794657861 cites W2429046910 @default.
- W2794657861 cites W2469854686 @default.
- W2794657861 cites W2481347112 @default.
- W2794657861 cites W2487412587 @default.
- W2794657861 cites W2509084108 @default.
- W2794657861 cites W2580793072 @default.
- W2794657861 cites W2594234754 @default.
- W2794657861 cites W2601201291 @default.
- W2794657861 cites W2612789561 @default.
- W2794657861 cites W2623407995 @default.
- W2794657861 cites W2962844766 @default.
- W2794657861 cites W4231691228 @default.
- W2794657861 cites W4236170267 @default.
- W2794657861 cites W4238973546 @default.
- W2794657861 cites W4301498971 @default.
- W2794657861 doi "https://doi.org/10.1109/hpca.2018.00050" @default.
- W2794657861 hasPublicationYear "2018" @default.
- W2794657861 type Work @default.
- W2794657861 sameAs 2794657861 @default.
- W2794657861 citedByCount "86" @default.
- W2794657861 countsByYear W27946578612017 @default.
- W2794657861 countsByYear W27946578612018 @default.
- W2794657861 countsByYear W27946578612019 @default.
- W2794657861 countsByYear W27946578612020 @default.
- W2794657861 countsByYear W27946578612021 @default.
- W2794657861 countsByYear W27946578612022 @default.
- W2794657861 countsByYear W27946578612023 @default.
- W2794657861 crossrefType "proceedings-article" @default.
- W2794657861 hasAuthorship W2794657861A5035119688 @default.
- W2794657861 hasAuthorship W2794657861A5036666743 @default.
- W2794657861 hasAuthorship W2794657861A5050695684 @default.
- W2794657861 hasAuthorship W2794657861A5066465984 @default.
- W2794657861 hasAuthorship W2794657861A5067813792 @default.
- W2794657861 hasConcept C100780047 @default.
- W2794657861 hasConcept C11413529 @default.
- W2794657861 hasConcept C121332964 @default.
- W2794657861 hasConcept C124296912 @default.
- W2794657861 hasConcept C131017901 @default.
- W2794657861 hasConcept C142362112 @default.
- W2794657861 hasConcept C149635348 @default.
- W2794657861 hasConcept C153349607 @default.
- W2794657861 hasConcept C163258240 @default.
- W2794657861 hasConcept C27670709 @default.
- W2794657861 hasConcept C2776531357 @default.
- W2794657861 hasConcept C2777526259 @default.
- W2794657861 hasConcept C41008148 @default.
- W2794657861 hasConcept C43214815 @default.
- W2794657861 hasConcept C43363307 @default.
- W2794657861 hasConcept C62520636 @default.
- W2794657861 hasConcept C63511323 @default.
- W2794657861 hasConcept C92855701 @default.
- W2794657861 hasConcept C9390403 @default.
- W2794657861 hasConcept C98986596 @default.
- W2794657861 hasConceptScore W2794657861C100780047 @default.
- W2794657861 hasConceptScore W2794657861C11413529 @default.
- W2794657861 hasConceptScore W2794657861C121332964 @default.
- W2794657861 hasConceptScore W2794657861C124296912 @default.
- W2794657861 hasConceptScore W2794657861C131017901 @default.
- W2794657861 hasConceptScore W2794657861C142362112 @default.
- W2794657861 hasConceptScore W2794657861C149635348 @default.
- W2794657861 hasConceptScore W2794657861C153349607 @default.
- W2794657861 hasConceptScore W2794657861C163258240 @default.
- W2794657861 hasConceptScore W2794657861C27670709 @default.
- W2794657861 hasConceptScore W2794657861C2776531357 @default.
- W2794657861 hasConceptScore W2794657861C2777526259 @default.