Matches in SemOpenAlex for { <https://semopenalex.org/work/W2794731980> ?p ?o ?g. }
- W2794731980 abstract "We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes." @default.
- W2794731980 created "2018-04-06" @default.
- W2794731980 creator A5015366699 @default.
- W2794731980 creator A5028118102 @default.
- W2794731980 creator A5037693685 @default.
- W2794731980 creator A5041940873 @default.
- W2794731980 creator A5075644511 @default.
- W2794731980 date "2019-01-15" @default.
- W2794731980 modified "2023-10-07" @default.
- W2794731980 title "Glassy Phase of Optimal Quantum Control" @default.
- W2794731980 cites W1508206977 @default.
- W2794731980 cites W1518885151 @default.
- W2794731980 cites W1527520754 @default.
- W2794731980 cites W1534603225 @default.
- W2794731980 cites W1692771265 @default.
- W2794731980 cites W1964009083 @default.
- W2794731980 cites W1978533437 @default.
- W2794731980 cites W1987060751 @default.
- W2794731980 cites W2005699027 @default.
- W2794731980 cites W2017521198 @default.
- W2794731980 cites W2018705366 @default.
- W2794731980 cites W2037303557 @default.
- W2794731980 cites W2038635718 @default.
- W2794731980 cites W2057285417 @default.
- W2794731980 cites W2059836092 @default.
- W2794731980 cites W2060246281 @default.
- W2794731980 cites W2065171116 @default.
- W2794731980 cites W2065307738 @default.
- W2794731980 cites W2075423090 @default.
- W2794731980 cites W2079336704 @default.
- W2794731980 cites W2079951449 @default.
- W2794731980 cites W2088431067 @default.
- W2794731980 cites W2089530258 @default.
- W2794731980 cites W2092479209 @default.
- W2794731980 cites W2105209757 @default.
- W2794731980 cites W2108658419 @default.
- W2794731980 cites W2160005414 @default.
- W2794731980 cites W2203542361 @default.
- W2794731980 cites W2488616581 @default.
- W2794731980 cites W2496556349 @default.
- W2794731980 cites W2546635825 @default.
- W2794731980 cites W2566505556 @default.
- W2794731980 cites W2610076952 @default.
- W2794731980 cites W2739602782 @default.
- W2794731980 cites W2769935109 @default.
- W2794731980 cites W2778662732 @default.
- W2794731980 cites W2787941237 @default.
- W2794731980 cites W2789409624 @default.
- W2794731980 cites W2810990692 @default.
- W2794731980 cites W2963880447 @default.
- W2794731980 cites W3099305384 @default.
- W2794731980 cites W3099373644 @default.
- W2794731980 cites W3100265183 @default.
- W2794731980 cites W3101044933 @default.
- W2794731980 cites W3101119258 @default.
- W2794731980 cites W3102180547 @default.
- W2794731980 cites W3104563286 @default.
- W2794731980 cites W3104972297 @default.
- W2794731980 cites W3143264742 @default.
- W2794731980 cites W567708786 @default.
- W2794731980 doi "https://doi.org/10.1103/physrevlett.122.020601" @default.
- W2794731980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30720331" @default.
- W2794731980 hasPublicationYear "2019" @default.
- W2794731980 type Work @default.
- W2794731980 sameAs 2794731980 @default.
- W2794731980 citedByCount "46" @default.
- W2794731980 countsByYear W27947319802019 @default.
- W2794731980 countsByYear W27947319802020 @default.
- W2794731980 countsByYear W27947319802021 @default.
- W2794731980 countsByYear W27947319802022 @default.
- W2794731980 countsByYear W27947319802023 @default.
- W2794731980 crossrefType "journal-article" @default.
- W2794731980 hasAuthorship W2794731980A5015366699 @default.
- W2794731980 hasAuthorship W2794731980A5028118102 @default.
- W2794731980 hasAuthorship W2794731980A5037693685 @default.
- W2794731980 hasAuthorship W2794731980A5041940873 @default.
- W2794731980 hasAuthorship W2794731980A5075644511 @default.
- W2794731980 hasBestOaLocation W27947319801 @default.
- W2794731980 hasConcept C121332964 @default.
- W2794731980 hasConcept C121864883 @default.
- W2794731980 hasConcept C149288129 @default.
- W2794731980 hasConcept C150775274 @default.
- W2794731980 hasConcept C154945302 @default.
- W2794731980 hasConcept C168773769 @default.
- W2794731980 hasConcept C17744445 @default.
- W2794731980 hasConcept C199539241 @default.
- W2794731980 hasConcept C204795200 @default.
- W2794731980 hasConcept C2776359362 @default.
- W2794731980 hasConcept C41008148 @default.
- W2794731980 hasConcept C41608201 @default.
- W2794731980 hasConcept C42704618 @default.
- W2794731980 hasConcept C51329190 @default.
- W2794731980 hasConcept C62520636 @default.
- W2794731980 hasConcept C72190298 @default.
- W2794731980 hasConcept C80444323 @default.
- W2794731980 hasConcept C84114770 @default.
- W2794731980 hasConcept C94625758 @default.
- W2794731980 hasConcept C97355855 @default.
- W2794731980 hasConceptScore W2794731980C121332964 @default.
- W2794731980 hasConceptScore W2794731980C121864883 @default.