Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795010147> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2795010147 endingPage "4200" @default.
- W2795010147 startingPage "4179" @default.
- W2795010147 abstract "Different discrete velocity quadrature rules are analyzed and applied in gas-kinetic unified algorithm (GKUA) for rarefied free-molecule transition to continuum flows, including the original and modified Gauss–Hermite quadrature rules, the composite Newton–Cotes integration methods, the multi-subinterval Gauss–Legendre numerical quadrature rule and the Gauss–Chebyshev integral rule. Mathematical description and basic procedures of GKUA are presented briefly in solving the gas flow problems covering various flow regimes on the basis of the direction solution to the unified kinetic model of the Boltzmann equation. The numerical analyses and the application conditions of these quadrature rules are given in detail, as well as the evaluating method for the discretized velocity ordinate (DVO) points and their corresponding weights of each rule. According to the comparisons for some Gauss-type function integrations, the original and modified Gauss–Hermite quadrature rules can obtain the integration results with enough accuracy by using least DVO points among these rules, while the impossibility of more nodes limits the application scope of these two quadrature rules. Other four rules can conduct the problems with a needful wide integral interval, even if they use more DVO points than the Gauss–Hermite rules. Besides, the multi-subinterval Gauss–Legendre and the Gauss–Chebyshev rules can use less DVO points to obtain accurate integration results than the other two rules, which demonstrate their advantage and are recommended to be applied in GKUA to solve the Boltzmann model equation efficiently. Numerical simulations for the Sod and Lax shock-tube problems and the shock-density wave disturbing interaction problems are conducted by using GKUA with the above quadrature rules to make comparison. All quadrature rules can obtain nice accurate results with different number of the DVO points. The original and modified Gauss–Hermite quadrature rules, using the least DVO nodes to obtain results with enough computed precision, are the best options for GKUA to simulate low mach number flow regimes, while the Gauss–Chebyshev quadrature rule, which can obtain results with adequate and controllable precision for a wide integral interval using little DVO nodes, is the most appropriate quadrature rule for GKUA solving some complex and high mach number flows covering various flow regimes." @default.
- W2795010147 created "2018-04-06" @default.
- W2795010147 creator A5049103216 @default.
- W2795010147 creator A5070632878 @default.
- W2795010147 date "2018-06-01" @default.
- W2795010147 modified "2023-10-16" @default.
- W2795010147 title "Investigation on different discrete velocity quadrature rules in gas-kinetic unified algorithm solving Boltzmann model equation" @default.
- W2795010147 cites W1685328395 @default.
- W2795010147 cites W1965783158 @default.
- W2795010147 cites W1974378034 @default.
- W2795010147 cites W1974463225 @default.
- W2795010147 cites W1986752469 @default.
- W2795010147 cites W1988844796 @default.
- W2795010147 cites W1995627589 @default.
- W2795010147 cites W2012315814 @default.
- W2795010147 cites W2013702974 @default.
- W2795010147 cites W2023782946 @default.
- W2795010147 cites W2039150507 @default.
- W2795010147 cites W2040938693 @default.
- W2795010147 cites W2062528395 @default.
- W2795010147 cites W2066060292 @default.
- W2795010147 cites W2083597099 @default.
- W2795010147 cites W2100272122 @default.
- W2795010147 cites W2112705225 @default.
- W2795010147 cites W2134306372 @default.
- W2795010147 cites W2153449759 @default.
- W2795010147 cites W2314605371 @default.
- W2795010147 cites W2317847255 @default.
- W2795010147 cites W2344453909 @default.
- W2795010147 cites W2463931539 @default.
- W2795010147 cites W2581647760 @default.
- W2795010147 cites W980672698 @default.
- W2795010147 doi "https://doi.org/10.1016/j.camwa.2018.03.021" @default.
- W2795010147 hasPublicationYear "2018" @default.
- W2795010147 type Work @default.
- W2795010147 sameAs 2795010147 @default.
- W2795010147 citedByCount "11" @default.
- W2795010147 countsByYear W27950101472019 @default.
- W2795010147 countsByYear W27950101472020 @default.
- W2795010147 countsByYear W27950101472021 @default.
- W2795010147 countsByYear W27950101472022 @default.
- W2795010147 countsByYear W27950101472023 @default.
- W2795010147 crossrefType "journal-article" @default.
- W2795010147 hasAuthorship W2795010147A5049103216 @default.
- W2795010147 hasAuthorship W2795010147A5070632878 @default.
- W2795010147 hasBestOaLocation W27950101471 @default.
- W2795010147 hasConcept C11413529 @default.
- W2795010147 hasConcept C120665830 @default.
- W2795010147 hasConcept C121332964 @default.
- W2795010147 hasConcept C121864883 @default.
- W2795010147 hasConcept C135889238 @default.
- W2795010147 hasConcept C165995430 @default.
- W2795010147 hasConcept C21821499 @default.
- W2795010147 hasConcept C28826006 @default.
- W2795010147 hasConcept C33923547 @default.
- W2795010147 hasConcept C35304006 @default.
- W2795010147 hasConcept C57879066 @default.
- W2795010147 hasConcept C62869609 @default.
- W2795010147 hasConcept C74650414 @default.
- W2795010147 hasConcept C97355855 @default.
- W2795010147 hasConceptScore W2795010147C11413529 @default.
- W2795010147 hasConceptScore W2795010147C120665830 @default.
- W2795010147 hasConceptScore W2795010147C121332964 @default.
- W2795010147 hasConceptScore W2795010147C121864883 @default.
- W2795010147 hasConceptScore W2795010147C135889238 @default.
- W2795010147 hasConceptScore W2795010147C165995430 @default.
- W2795010147 hasConceptScore W2795010147C21821499 @default.
- W2795010147 hasConceptScore W2795010147C28826006 @default.
- W2795010147 hasConceptScore W2795010147C33923547 @default.
- W2795010147 hasConceptScore W2795010147C35304006 @default.
- W2795010147 hasConceptScore W2795010147C57879066 @default.
- W2795010147 hasConceptScore W2795010147C62869609 @default.
- W2795010147 hasConceptScore W2795010147C74650414 @default.
- W2795010147 hasConceptScore W2795010147C97355855 @default.
- W2795010147 hasFunder F4320321001 @default.
- W2795010147 hasIssue "11" @default.
- W2795010147 hasLocation W27950101471 @default.
- W2795010147 hasOpenAccess W2795010147 @default.
- W2795010147 hasPrimaryLocation W27950101471 @default.
- W2795010147 hasRelatedWork W1829824544 @default.
- W2795010147 hasRelatedWork W1976766076 @default.
- W2795010147 hasRelatedWork W1994644189 @default.
- W2795010147 hasRelatedWork W1995514446 @default.
- W2795010147 hasRelatedWork W2014954479 @default.
- W2795010147 hasRelatedWork W2470529576 @default.
- W2795010147 hasRelatedWork W2556447748 @default.
- W2795010147 hasRelatedWork W2884791899 @default.
- W2795010147 hasRelatedWork W2949795840 @default.
- W2795010147 hasRelatedWork W3104602010 @default.
- W2795010147 hasVolume "75" @default.
- W2795010147 isParatext "false" @default.
- W2795010147 isRetracted "false" @default.
- W2795010147 magId "2795010147" @default.
- W2795010147 workType "article" @default.