Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795052379> ?p ?o ?g. }
- W2795052379 endingPage "e0194985" @default.
- W2795052379 startingPage "e0194985" @default.
- W2795052379 abstract "Background Risk prediction is crucial in many areas of medical practice, such as cardiac transplantation, but existing clinical risk-scoring methods have suboptimal performance. We develop a novel risk prediction algorithm and test its performance on the database of all patients who were registered for cardiac transplantation in the United States during 1985-2015. Methods and findings We develop a new, interpretable, methodology (ToPs: Trees of Predictors) built on the principle that specific predictive (survival) models should be used for specific clusters within the patient population. ToPs discovers these specific clusters and the specific predictive model that performs best for each cluster. In comparison with existing clinical risk scoring methods and state-of-the-art machine learning methods, our method provides significant improvements in survival predictions, both post- and pre-cardiac transplantation. For instance: in terms of 3-month survival post-transplantation, our method achieves AUC of 0.660; the best clinical risk scoring method (RSS) achieves 0.587. In terms of 3-year survival/mortality predictions post-transplantation (in comparison to RSS), holding specificity at 80.0%, our algorithm correctly predicts survival for 2,442 (14.0%) more patients (of 17,441 who actually survived); holding sensitivity at 80.0%, our algorithm correctly predicts mortality for 694 (13.0%) more patients (of 5,339 who did not survive). ToPs achieves similar improvements for other time horizons and for predictions pre-transplantation. ToPs discovers the most relevant features (covariates), uses available features to best advantage, and can adapt to changes in clinical practice. Conclusions We show that, in comparison with existing clinical risk-scoring methods and other machine learning methods, ToPs significantly improves survival predictions both post- and pre-cardiac transplantation. ToPs provides a more accurate, personalized approach to survival prediction that can benefit patients, clinicians, and policymakers in making clinical decisions and setting clinical policy. Because survival prediction is widely used in clinical decision-making across diseases and clinical specialties, the implications of our methods are far-reaching." @default.
- W2795052379 created "2018-04-06" @default.
- W2795052379 creator A5002289527 @default.
- W2795052379 creator A5014596965 @default.
- W2795052379 creator A5048217036 @default.
- W2795052379 creator A5059163885 @default.
- W2795052379 creator A5072175850 @default.
- W2795052379 creator A5091539085 @default.
- W2795052379 date "2018-03-28" @default.
- W2795052379 modified "2023-10-17" @default.
- W2795052379 title "Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation" @default.
- W2795052379 cites W1972987731 @default.
- W2795052379 cites W1976991447 @default.
- W2795052379 cites W1979425223 @default.
- W2795052379 cites W1980746278 @default.
- W2795052379 cites W1993745210 @default.
- W2795052379 cites W1997780004 @default.
- W2795052379 cites W1998328051 @default.
- W2795052379 cites W1998642407 @default.
- W2795052379 cites W2001984572 @default.
- W2795052379 cites W2010798210 @default.
- W2795052379 cites W2020113195 @default.
- W2795052379 cites W2024960673 @default.
- W2795052379 cites W2051900052 @default.
- W2795052379 cites W2055873761 @default.
- W2795052379 cites W2079132293 @default.
- W2795052379 cites W2080781763 @default.
- W2795052379 cites W2103679597 @default.
- W2795052379 cites W2106606536 @default.
- W2795052379 cites W2115098571 @default.
- W2795052379 cites W2136839015 @default.
- W2795052379 cites W2137483071 @default.
- W2795052379 doi "https://doi.org/10.1371/journal.pone.0194985" @default.
- W2795052379 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5874060" @default.
- W2795052379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29590219" @default.
- W2795052379 hasPublicationYear "2018" @default.
- W2795052379 type Work @default.
- W2795052379 sameAs 2795052379 @default.
- W2795052379 citedByCount "40" @default.
- W2795052379 countsByYear W27950523792018 @default.
- W2795052379 countsByYear W27950523792019 @default.
- W2795052379 countsByYear W27950523792020 @default.
- W2795052379 countsByYear W27950523792021 @default.
- W2795052379 countsByYear W27950523792022 @default.
- W2795052379 countsByYear W27950523792023 @default.
- W2795052379 crossrefType "journal-article" @default.
- W2795052379 hasAuthorship W2795052379A5002289527 @default.
- W2795052379 hasAuthorship W2795052379A5014596965 @default.
- W2795052379 hasAuthorship W2795052379A5048217036 @default.
- W2795052379 hasAuthorship W2795052379A5059163885 @default.
- W2795052379 hasAuthorship W2795052379A5072175850 @default.
- W2795052379 hasAuthorship W2795052379A5091539085 @default.
- W2795052379 hasBestOaLocation W27950523791 @default.
- W2795052379 hasConcept C10515644 @default.
- W2795052379 hasConcept C111919701 @default.
- W2795052379 hasConcept C119043178 @default.
- W2795052379 hasConcept C119857082 @default.
- W2795052379 hasConcept C126322002 @default.
- W2795052379 hasConcept C154945302 @default.
- W2795052379 hasConcept C2385561 @default.
- W2795052379 hasConcept C2908647359 @default.
- W2795052379 hasConcept C2911091166 @default.
- W2795052379 hasConcept C41008148 @default.
- W2795052379 hasConcept C44249647 @default.
- W2795052379 hasConcept C71924100 @default.
- W2795052379 hasConcept C99454951 @default.
- W2795052379 hasConceptScore W2795052379C10515644 @default.
- W2795052379 hasConceptScore W2795052379C111919701 @default.
- W2795052379 hasConceptScore W2795052379C119043178 @default.
- W2795052379 hasConceptScore W2795052379C119857082 @default.
- W2795052379 hasConceptScore W2795052379C126322002 @default.
- W2795052379 hasConceptScore W2795052379C154945302 @default.
- W2795052379 hasConceptScore W2795052379C2385561 @default.
- W2795052379 hasConceptScore W2795052379C2908647359 @default.
- W2795052379 hasConceptScore W2795052379C2911091166 @default.
- W2795052379 hasConceptScore W2795052379C41008148 @default.
- W2795052379 hasConceptScore W2795052379C44249647 @default.
- W2795052379 hasConceptScore W2795052379C71924100 @default.
- W2795052379 hasConceptScore W2795052379C99454951 @default.
- W2795052379 hasFunder F4320306076 @default.
- W2795052379 hasIssue "3" @default.
- W2795052379 hasLocation W27950523791 @default.
- W2795052379 hasLocation W27950523792 @default.
- W2795052379 hasLocation W27950523793 @default.
- W2795052379 hasLocation W27950523794 @default.
- W2795052379 hasLocation W27950523795 @default.
- W2795052379 hasLocation W27950523796 @default.
- W2795052379 hasLocation W27950523797 @default.
- W2795052379 hasLocation W27950523798 @default.
- W2795052379 hasOpenAccess W2795052379 @default.
- W2795052379 hasPrimaryLocation W27950523791 @default.
- W2795052379 hasRelatedWork W2014671160 @default.
- W2795052379 hasRelatedWork W2028140427 @default.
- W2795052379 hasRelatedWork W2104184505 @default.
- W2795052379 hasRelatedWork W2153109178 @default.
- W2795052379 hasRelatedWork W2748952813 @default.
- W2795052379 hasRelatedWork W2899084033 @default.
- W2795052379 hasRelatedWork W2961085424 @default.