Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795094927> ?p ?o ?g. }
- W2795094927 abstract "Structural health monitoring (SHM) may be exploited to estimate the mechanical properties of existing structures and check for potential damage. Among commonly used methodologies for property characterization, the Bayesian approach holds the lead because it is endowed with the particular advantage of quantifying associated uncertainties. These uncertainties arise owing to diverse factors including (1) sensor accuracy and positioning, (2) environmental influences, and (3) modeling errors. In minimizing the influence of sensor-related uncertainties, an optimal design may be adopted for the SHM campaign to maximize the information content of the measurements. Here, a procedure based on Bayesian experimental design is proposed to quantify the expected utility of the sensor network. The positions of the used sensors are selected in a way that maximizes the Shannon information gain between the prior and posterior probability distributions of the parameters to be estimated. In order to numerically solve the resulting optimization problem, surrogate models based on polynomial chaos expansion (PCE) and stochastic optimization methods are used. The use of surrogates allows one to reduce the computational cost of the associated model runs. The method is applied to a large-scale example, namely the Pirelli Tower in Milan." @default.
- W2795094927 created "2018-04-06" @default.
- W2795094927 creator A5003923056 @default.
- W2795094927 creator A5031531662 @default.
- W2795094927 creator A5063219013 @default.
- W2795094927 date "2018-06-01" @default.
- W2795094927 modified "2023-10-10" @default.
- W2795094927 title "Structural Health Monitoring Sensor Network Optimization through Bayesian Experimental Design" @default.
- W2795094927 cites W102487131 @default.
- W2795094927 cites W1599132067 @default.
- W2795094927 cites W1969131157 @default.
- W2795094927 cites W1976395969 @default.
- W2795094927 cites W1984943006 @default.
- W2795094927 cites W1985320029 @default.
- W2795094927 cites W1987084419 @default.
- W2795094927 cites W2000015806 @default.
- W2795094927 cites W2004338573 @default.
- W2795094927 cites W2005423095 @default.
- W2795094927 cites W2014018052 @default.
- W2795094927 cites W2016467472 @default.
- W2795094927 cites W2019143734 @default.
- W2795094927 cites W2021274998 @default.
- W2795094927 cites W2031063730 @default.
- W2795094927 cites W2045355467 @default.
- W2795094927 cites W2050079552 @default.
- W2795094927 cites W2056180858 @default.
- W2795094927 cites W2060442802 @default.
- W2795094927 cites W2065455374 @default.
- W2795094927 cites W2071128523 @default.
- W2795094927 cites W2072646115 @default.
- W2795094927 cites W2076580309 @default.
- W2795094927 cites W2083415217 @default.
- W2795094927 cites W2085497080 @default.
- W2795094927 cites W2091070374 @default.
- W2795094927 cites W2092939357 @default.
- W2795094927 cites W2097912000 @default.
- W2795094927 cites W2106600817 @default.
- W2795094927 cites W2108835525 @default.
- W2795094927 cites W2112036188 @default.
- W2795094927 cites W2112823474 @default.
- W2795094927 cites W2131745692 @default.
- W2795094927 cites W2135169321 @default.
- W2795094927 cites W2136602340 @default.
- W2795094927 cites W2156461383 @default.
- W2795094927 cites W2166670624 @default.
- W2795094927 cites W2171784600 @default.
- W2795094927 cites W2312383797 @default.
- W2795094927 cites W2321957512 @default.
- W2795094927 cites W2337712807 @default.
- W2795094927 cites W2469878229 @default.
- W2795094927 cites W2553031445 @default.
- W2795094927 cites W2556216835 @default.
- W2795094927 cites W2593045800 @default.
- W2795094927 cites W2753994518 @default.
- W2795094927 cites W2978009807 @default.
- W2795094927 cites W4252262371 @default.
- W2795094927 cites W60278794 @default.
- W2795094927 doi "https://doi.org/10.1061/ajrua6.0000966" @default.
- W2795094927 hasPublicationYear "2018" @default.
- W2795094927 type Work @default.
- W2795094927 sameAs 2795094927 @default.
- W2795094927 citedByCount "33" @default.
- W2795094927 countsByYear W27950949272018 @default.
- W2795094927 countsByYear W27950949272019 @default.
- W2795094927 countsByYear W27950949272020 @default.
- W2795094927 countsByYear W27950949272021 @default.
- W2795094927 countsByYear W27950949272022 @default.
- W2795094927 countsByYear W27950949272023 @default.
- W2795094927 crossrefType "journal-article" @default.
- W2795094927 hasAuthorship W2795094927A5003923056 @default.
- W2795094927 hasAuthorship W2795094927A5031531662 @default.
- W2795094927 hasAuthorship W2795094927A5063219013 @default.
- W2795094927 hasConcept C101112237 @default.
- W2795094927 hasConcept C105795698 @default.
- W2795094927 hasConcept C107673813 @default.
- W2795094927 hasConcept C11413529 @default.
- W2795094927 hasConcept C119857082 @default.
- W2795094927 hasConcept C124101348 @default.
- W2795094927 hasConcept C126255220 @default.
- W2795094927 hasConcept C127413603 @default.
- W2795094927 hasConcept C154945302 @default.
- W2795094927 hasConcept C160234255 @default.
- W2795094927 hasConcept C19499675 @default.
- W2795094927 hasConcept C197656079 @default.
- W2795094927 hasConcept C24590314 @default.
- W2795094927 hasConcept C2776247918 @default.
- W2795094927 hasConcept C2778049539 @default.
- W2795094927 hasConcept C31258907 @default.
- W2795094927 hasConcept C32230216 @default.
- W2795094927 hasConcept C33724603 @default.
- W2795094927 hasConcept C33923547 @default.
- W2795094927 hasConcept C41008148 @default.
- W2795094927 hasConcept C66938386 @default.
- W2795094927 hasConcept C99173435 @default.
- W2795094927 hasConceptScore W2795094927C101112237 @default.
- W2795094927 hasConceptScore W2795094927C105795698 @default.
- W2795094927 hasConceptScore W2795094927C107673813 @default.
- W2795094927 hasConceptScore W2795094927C11413529 @default.
- W2795094927 hasConceptScore W2795094927C119857082 @default.
- W2795094927 hasConceptScore W2795094927C124101348 @default.