Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795173460> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2795173460 abstract "We consider the problem of evaluating new improvements to distributed processing platforms like Spark and Hadoop. One approach commonly used when evaluating these systems is to use workloads published by companies with large data clusters, like Google and Facebook. These evaluations seek to demonstrate the benefits of improvements to critical framework components like the job scheduler, under realistic workloads. However, published workloads typically do not contain information on dependencies between the jobs. This is problematic, as ignoring dependencies could lead to significantly misestimating the speedup obtained from a particular improvement. In this position paper, we discuss why it is important to include job dependency information when evaluating distributed processing frameworks, and show that workflow mining techniques can be used to obtain dependencies from job traces that lack them. As a proof-of-concept, we show that the proposed methodology is able to find workflows in traces published by Google." @default.
- W2795173460 created "2018-04-06" @default.
- W2795173460 creator A5071047865 @default.
- W2795173460 creator A5074544136 @default.
- W2795173460 date "2017-11-01" @default.
- W2795173460 modified "2023-09-26" @default.
- W2795173460 title "Inferring Workflows with Job Dependencies from Distributed Processing Systems Logs" @default.
- W2795173460 cites W1579147384 @default.
- W2795173460 cites W1795725 @default.
- W2795173460 cites W1972619529 @default.
- W2795173460 cites W1985790218 @default.
- W2795173460 cites W2027860831 @default.
- W2795173460 cites W2087639786 @default.
- W2795173460 cites W2096125134 @default.
- W2795173460 cites W2096998948 @default.
- W2795173460 cites W2098250644 @default.
- W2795173460 cites W2098935637 @default.
- W2795173460 cites W2100830825 @default.
- W2795173460 cites W2103070976 @default.
- W2795173460 cites W2113920655 @default.
- W2795173460 cites W2120416238 @default.
- W2795173460 cites W2129542763 @default.
- W2795173460 cites W2134937538 @default.
- W2795173460 cites W2137717294 @default.
- W2795173460 cites W2141563029 @default.
- W2795173460 cites W2152956081 @default.
- W2795173460 cites W2155793280 @default.
- W2795173460 cites W2163291889 @default.
- W2795173460 cites W2173213060 @default.
- W2795173460 cites W2189465200 @default.
- W2795173460 cites W2248732043 @default.
- W2795173460 cites W2283208771 @default.
- W2795173460 cites W2571928150 @default.
- W2795173460 doi "https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.168" @default.
- W2795173460 hasPublicationYear "2017" @default.
- W2795173460 type Work @default.
- W2795173460 sameAs 2795173460 @default.
- W2795173460 citedByCount "0" @default.
- W2795173460 crossrefType "proceedings-article" @default.
- W2795173460 hasAuthorship W2795173460A5071047865 @default.
- W2795173460 hasAuthorship W2795173460A5074544136 @default.
- W2795173460 hasConcept C115903868 @default.
- W2795173460 hasConcept C120314980 @default.
- W2795173460 hasConcept C124101348 @default.
- W2795173460 hasConcept C173608175 @default.
- W2795173460 hasConcept C177212765 @default.
- W2795173460 hasConcept C19768560 @default.
- W2795173460 hasConcept C199360897 @default.
- W2795173460 hasConcept C2781215313 @default.
- W2795173460 hasConcept C41008148 @default.
- W2795173460 hasConcept C68339613 @default.
- W2795173460 hasConcept C70061542 @default.
- W2795173460 hasConcept C77088390 @default.
- W2795173460 hasConceptScore W2795173460C115903868 @default.
- W2795173460 hasConceptScore W2795173460C120314980 @default.
- W2795173460 hasConceptScore W2795173460C124101348 @default.
- W2795173460 hasConceptScore W2795173460C173608175 @default.
- W2795173460 hasConceptScore W2795173460C177212765 @default.
- W2795173460 hasConceptScore W2795173460C19768560 @default.
- W2795173460 hasConceptScore W2795173460C199360897 @default.
- W2795173460 hasConceptScore W2795173460C2781215313 @default.
- W2795173460 hasConceptScore W2795173460C41008148 @default.
- W2795173460 hasConceptScore W2795173460C68339613 @default.
- W2795173460 hasConceptScore W2795173460C70061542 @default.
- W2795173460 hasConceptScore W2795173460C77088390 @default.
- W2795173460 hasLocation W27951734601 @default.
- W2795173460 hasOpenAccess W2795173460 @default.
- W2795173460 hasPrimaryLocation W27951734601 @default.
- W2795173460 hasRelatedWork W1808694123 @default.
- W2795173460 hasRelatedWork W192156609 @default.
- W2795173460 hasRelatedWork W2016901333 @default.
- W2795173460 hasRelatedWork W2074306108 @default.
- W2795173460 hasRelatedWork W2104993419 @default.
- W2795173460 hasRelatedWork W2333671020 @default.
- W2795173460 hasRelatedWork W2497783665 @default.
- W2795173460 hasRelatedWork W2498111289 @default.
- W2795173460 hasRelatedWork W2591557563 @default.
- W2795173460 hasRelatedWork W2603006972 @default.
- W2795173460 hasRelatedWork W2765581018 @default.
- W2795173460 hasRelatedWork W2773326840 @default.
- W2795173460 hasRelatedWork W2793139166 @default.
- W2795173460 hasRelatedWork W2896805455 @default.
- W2795173460 hasRelatedWork W2903899452 @default.
- W2795173460 hasRelatedWork W2910094211 @default.
- W2795173460 hasRelatedWork W3098310942 @default.
- W2795173460 hasRelatedWork W3110783234 @default.
- W2795173460 hasRelatedWork W3174802341 @default.
- W2795173460 hasRelatedWork W588228081 @default.
- W2795173460 isParatext "false" @default.
- W2795173460 isRetracted "false" @default.
- W2795173460 magId "2795173460" @default.
- W2795173460 workType "article" @default.