Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795179332> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2795179332 abstract "The growth of the data is enormous in the current scenario of the developing information technology and performing the data classification is complex both in time and information extraction. Moreover, there are uncertainties in performing the big data classification that are associated with the unbalanced datasets. In order to overcome the issues, a novel method of big data classification is introduced in this paper. The novel method, Log Decision Tree and Map Reduce Framework (LDT-MRF) uses the Log Decision Tree (LDT) and the Map Reduce Framework (MRF) for performing the parallel data classification. The novel parameter termed as Log-entropy is used to select the best feature attribute for data classification. The data classification is performed using the LDT that enables the efficient data classification. Experimentation is carried out using three datasets, namely the Cleveland dataset, Switzerland dataset, and the Breast Cancer dataset. The comparative analysis is carried out using the performance metrics, such as sensitivity, specificity, and accuracy to prove the effectiveness of the proposed method. The sensitivity, specificity, and accuracy of the proposed method is 84.7596%, 74.633%, and 80.9088% respectively, which is greater when compared with the existing methods of big data classification." @default.
- W2795179332 created "2018-04-06" @default.
- W2795179332 creator A5005789814 @default.
- W2795179332 creator A5046043600 @default.
- W2795179332 date "2017-12-31" @default.
- W2795179332 modified "2023-09-26" @default.
- W2795179332 title "LDT-MRF: Log decision tree and map reduce framework to clinical big data classification" @default.
- W2795179332 doi "https://doi.org/10.14419/ijet.v7i1.5.9129" @default.
- W2795179332 hasPublicationYear "2017" @default.
- W2795179332 type Work @default.
- W2795179332 sameAs 2795179332 @default.
- W2795179332 citedByCount "0" @default.
- W2795179332 crossrefType "journal-article" @default.
- W2795179332 hasAuthorship W2795179332A5005789814 @default.
- W2795179332 hasAuthorship W2795179332A5046043600 @default.
- W2795179332 hasBestOaLocation W27951793321 @default.
- W2795179332 hasConcept C113174947 @default.
- W2795179332 hasConcept C114614502 @default.
- W2795179332 hasConcept C124101348 @default.
- W2795179332 hasConcept C153180895 @default.
- W2795179332 hasConcept C154945302 @default.
- W2795179332 hasConcept C33923547 @default.
- W2795179332 hasConcept C41008148 @default.
- W2795179332 hasConcept C75684735 @default.
- W2795179332 hasConcept C84525736 @default.
- W2795179332 hasConceptScore W2795179332C113174947 @default.
- W2795179332 hasConceptScore W2795179332C114614502 @default.
- W2795179332 hasConceptScore W2795179332C124101348 @default.
- W2795179332 hasConceptScore W2795179332C153180895 @default.
- W2795179332 hasConceptScore W2795179332C154945302 @default.
- W2795179332 hasConceptScore W2795179332C33923547 @default.
- W2795179332 hasConceptScore W2795179332C41008148 @default.
- W2795179332 hasConceptScore W2795179332C75684735 @default.
- W2795179332 hasConceptScore W2795179332C84525736 @default.
- W2795179332 hasLocation W27951793321 @default.
- W2795179332 hasOpenAccess W2795179332 @default.
- W2795179332 hasPrimaryLocation W27951793321 @default.
- W2795179332 hasRelatedWork W1982169401 @default.
- W2795179332 hasRelatedWork W2003253977 @default.
- W2795179332 hasRelatedWork W2019770223 @default.
- W2795179332 hasRelatedWork W2026531206 @default.
- W2795179332 hasRelatedWork W2046628645 @default.
- W2795179332 hasRelatedWork W2145005293 @default.
- W2795179332 hasRelatedWork W2152844870 @default.
- W2795179332 hasRelatedWork W2292819906 @default.
- W2795179332 hasRelatedWork W2361585350 @default.
- W2795179332 hasRelatedWork W2370157720 @default.
- W2795179332 hasRelatedWork W2388181483 @default.
- W2795179332 hasRelatedWork W2405440187 @default.
- W2795179332 hasRelatedWork W2571754936 @default.
- W2795179332 hasRelatedWork W2591672004 @default.
- W2795179332 hasRelatedWork W2907978276 @default.
- W2795179332 hasRelatedWork W2908445743 @default.
- W2795179332 hasRelatedWork W2936738429 @default.
- W2795179332 hasRelatedWork W2998381739 @default.
- W2795179332 hasRelatedWork W3166114894 @default.
- W2795179332 hasRelatedWork W1609960899 @default.
- W2795179332 isParatext "false" @default.
- W2795179332 isRetracted "false" @default.
- W2795179332 magId "2795179332" @default.
- W2795179332 workType "article" @default.