Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795330824> ?p ?o ?g. }
- W2795330824 endingPage "7748" @default.
- W2795330824 startingPage "7737" @default.
- W2795330824 abstract "Simulation of gas adsorption on graphite is commonly carried out using a model that assumes that graphite has an energetically homogeneous surface, constant interlayer spacing, and isotropically polarizable carbon atoms. This simple model fails to describe experimental isotherms and isosteric heats for many gas/graphite pairs. In this paper, we investigate the adsorption of krypton and methane on graphite, using a recently developed molecular model for graphite, that has been shown to improve the description of experimental isotherms and isosteric heats for nitrogen and argon.(1−3) Although the collision diameters of krypton and methane are almost the same, their isotherms and heats are significantly different. With the aid of detailed microscopic analysis, we establish the mechanism underlying the transitions in adsorbate loading as well as the origin of the spike in the experimental isosteric heat versus loading for methane and krypton. The first adsorbate layer of both adsorbates exhibits the transition from a 2D-fluid to a commensurate (C) state; but only krypton shows a subsequent transition to incommensurate (IC) packing before the onset of the second layer. However, the first adsorbate layer of the methane isotherm does also undergo this transition, but only after the second layer has been formed at higher temperatures (T > 87 K). This is explained by the difference between the intermolecular spacing in the C-packed lattice and in the IC-lattice. The difference is smaller for methane than for krypton, making it more difficult for methane to achieve IC-packing and it is also reflected in the isosteric heat versus loading (heat curve). The heat curves for both adsorbates exhibit an increase in the isosteric heat at submonolayer coverage and reach a maximum at the coverage corresponding to C-packing at temperatures far below the triple point. As the temperature is increased, the isosteric heat also increases to a maximum at a loading less than the C-packing, followed by a cusp due to the onset of the second layer, prior to the spike at the C-packing. The difference between the two adsorbates is shown by the appearance of an additional spike for krypton when the C–IC transition occurs. These heat spikes for Kr due to C-packing and IC-packing shift to higher loading and have smaller magnitudes at higher temperatures because of the contributions from higher layers." @default.
- W2795330824 created "2018-04-06" @default.
- W2795330824 creator A5017820117 @default.
- W2795330824 creator A5050852420 @default.
- W2795330824 creator A5052124323 @default.
- W2795330824 creator A5065393537 @default.
- W2795330824 creator A5073042673 @default.
- W2795330824 date "2018-03-27" @default.
- W2795330824 modified "2023-09-26" @default.
- W2795330824 title "Comparison of the Adsorption Transitions of Methane and Krypton on Graphite at Sub-Monolayer Coverage" @default.
- W2795330824 cites W1506802427 @default.
- W2795330824 cites W1972350778 @default.
- W2795330824 cites W1973641880 @default.
- W2795330824 cites W1974209885 @default.
- W2795330824 cites W1987622555 @default.
- W2795330824 cites W1991468876 @default.
- W2795330824 cites W1992661880 @default.
- W2795330824 cites W2002619855 @default.
- W2795330824 cites W2010242716 @default.
- W2795330824 cites W2012169372 @default.
- W2795330824 cites W2015757778 @default.
- W2795330824 cites W2015922052 @default.
- W2795330824 cites W2016101271 @default.
- W2795330824 cites W2019305632 @default.
- W2795330824 cites W2021010365 @default.
- W2795330824 cites W2028524423 @default.
- W2795330824 cites W2033879550 @default.
- W2795330824 cites W2041669746 @default.
- W2795330824 cites W2042318698 @default.
- W2795330824 cites W2042353411 @default.
- W2795330824 cites W2047985068 @default.
- W2795330824 cites W2053631681 @default.
- W2795330824 cites W2054651085 @default.
- W2795330824 cites W2057717303 @default.
- W2795330824 cites W2058430091 @default.
- W2795330824 cites W2064850723 @default.
- W2795330824 cites W2066784430 @default.
- W2795330824 cites W2068728331 @default.
- W2795330824 cites W2076636494 @default.
- W2795330824 cites W2078006969 @default.
- W2795330824 cites W2078402834 @default.
- W2795330824 cites W2078897390 @default.
- W2795330824 cites W2080712734 @default.
- W2795330824 cites W2084513210 @default.
- W2795330824 cites W2088634571 @default.
- W2795330824 cites W2090859939 @default.
- W2795330824 cites W2093101327 @default.
- W2795330824 cites W2094268754 @default.
- W2795330824 cites W2101848287 @default.
- W2795330824 cites W2104390956 @default.
- W2795330824 cites W2110244844 @default.
- W2795330824 cites W2121054302 @default.
- W2795330824 cites W2129075851 @default.
- W2795330824 cites W2134121763 @default.
- W2795330824 cites W2156454985 @default.
- W2795330824 cites W2204856849 @default.
- W2795330824 cites W2220601647 @default.
- W2795330824 cites W2318476754 @default.
- W2795330824 cites W2613086936 @default.
- W2795330824 cites W2726844078 @default.
- W2795330824 cites W2759369507 @default.
- W2795330824 cites W4232473308 @default.
- W2795330824 cites W4238863333 @default.
- W2795330824 doi "https://doi.org/10.1021/acs.jpcc.8b00535" @default.
- W2795330824 hasPublicationYear "2018" @default.
- W2795330824 type Work @default.
- W2795330824 sameAs 2795330824 @default.
- W2795330824 citedByCount "3" @default.
- W2795330824 countsByYear W27953308242020 @default.
- W2795330824 countsByYear W27953308242021 @default.
- W2795330824 countsByYear W27953308242022 @default.
- W2795330824 crossrefType "journal-article" @default.
- W2795330824 hasAuthorship W2795330824A5017820117 @default.
- W2795330824 hasAuthorship W2795330824A5050852420 @default.
- W2795330824 hasAuthorship W2795330824A5052124323 @default.
- W2795330824 hasAuthorship W2795330824A5065393537 @default.
- W2795330824 hasAuthorship W2795330824A5073042673 @default.
- W2795330824 hasConcept C121332964 @default.
- W2795330824 hasConcept C147789679 @default.
- W2795330824 hasConcept C150394285 @default.
- W2795330824 hasConcept C178790620 @default.
- W2795330824 hasConcept C185592680 @default.
- W2795330824 hasConcept C192562407 @default.
- W2795330824 hasConcept C2779698641 @default.
- W2795330824 hasConcept C516920438 @default.
- W2795330824 hasConcept C521692839 @default.
- W2795330824 hasConcept C547737533 @default.
- W2795330824 hasConcept C55493867 @default.
- W2795330824 hasConcept C7070889 @default.
- W2795330824 hasConcept C97355855 @default.
- W2795330824 hasConceptScore W2795330824C121332964 @default.
- W2795330824 hasConceptScore W2795330824C147789679 @default.
- W2795330824 hasConceptScore W2795330824C150394285 @default.
- W2795330824 hasConceptScore W2795330824C178790620 @default.
- W2795330824 hasConceptScore W2795330824C185592680 @default.
- W2795330824 hasConceptScore W2795330824C192562407 @default.
- W2795330824 hasConceptScore W2795330824C2779698641 @default.
- W2795330824 hasConceptScore W2795330824C516920438 @default.