Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795470708> ?p ?o ?g. }
- W2795470708 abstract "In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Zeff) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Zeff) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Zeff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZeff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZeff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZeff variation over the range of materials, from ρZeff = 2 g.cm− 3 (lung) to 27 g.cm− 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZeff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZeff. The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images." @default.
- W2795470708 created "2018-04-13" @default.
- W2795470708 creator A5042347658 @default.
- W2795470708 creator A5050116070 @default.
- W2795470708 creator A5050325622 @default.
- W2795470708 creator A5073954197 @default.
- W2795470708 creator A5082504372 @default.
- W2795470708 creator A5090570082 @default.
- W2795470708 date "2018-02-26" @default.
- W2795470708 modified "2023-10-17" @default.
- W2795470708 title "A new tissue segmentation method to calculate 3D dose in small animal radiation therapy" @default.
- W2795470708 cites W1967121735 @default.
- W2795470708 cites W1969635032 @default.
- W2795470708 cites W1969915038 @default.
- W2795470708 cites W1972121365 @default.
- W2795470708 cites W1983882042 @default.
- W2795470708 cites W1992444564 @default.
- W2795470708 cites W1992457344 @default.
- W2795470708 cites W1998088861 @default.
- W2795470708 cites W2001881071 @default.
- W2795470708 cites W2016261131 @default.
- W2795470708 cites W2048865315 @default.
- W2795470708 cites W2049540258 @default.
- W2795470708 cites W2079829913 @default.
- W2795470708 cites W2093419156 @default.
- W2795470708 cites W2111938309 @default.
- W2795470708 cites W2127552707 @default.
- W2795470708 cites W2149081533 @default.
- W2795470708 cites W2323248393 @default.
- W2795470708 cites W2334024939 @default.
- W2795470708 cites W2513202742 @default.
- W2795470708 cites W2768264151 @default.
- W2795470708 doi "https://doi.org/10.1186/s13014-018-0971-8" @default.
- W2795470708 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5828405" @default.
- W2795470708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29482652" @default.
- W2795470708 hasPublicationYear "2018" @default.
- W2795470708 type Work @default.
- W2795470708 sameAs 2795470708 @default.
- W2795470708 citedByCount "7" @default.
- W2795470708 countsByYear W27954707082019 @default.
- W2795470708 countsByYear W27954707082020 @default.
- W2795470708 countsByYear W27954707082021 @default.
- W2795470708 countsByYear W27954707082022 @default.
- W2795470708 crossrefType "journal-article" @default.
- W2795470708 hasAuthorship W2795470708A5042347658 @default.
- W2795470708 hasAuthorship W2795470708A5050116070 @default.
- W2795470708 hasAuthorship W2795470708A5050325622 @default.
- W2795470708 hasAuthorship W2795470708A5073954197 @default.
- W2795470708 hasAuthorship W2795470708A5082504372 @default.
- W2795470708 hasAuthorship W2795470708A5090570082 @default.
- W2795470708 hasBestOaLocation W27954707081 @default.
- W2795470708 hasConcept C105795698 @default.
- W2795470708 hasConcept C120665830 @default.
- W2795470708 hasConcept C121332964 @default.
- W2795470708 hasConcept C136229726 @default.
- W2795470708 hasConcept C151337348 @default.
- W2795470708 hasConcept C159317903 @default.
- W2795470708 hasConcept C184779094 @default.
- W2795470708 hasConcept C192562407 @default.
- W2795470708 hasConcept C19499675 @default.
- W2795470708 hasConcept C2989005 @default.
- W2795470708 hasConcept C33923547 @default.
- W2795470708 hasConcept C34445779 @default.
- W2795470708 hasConcept C520434653 @default.
- W2795470708 hasConcept C59919367 @default.
- W2795470708 hasConcept C61782718 @default.
- W2795470708 hasConcept C71924100 @default.
- W2795470708 hasConcept C75088862 @default.
- W2795470708 hasConceptScore W2795470708C105795698 @default.
- W2795470708 hasConceptScore W2795470708C120665830 @default.
- W2795470708 hasConceptScore W2795470708C121332964 @default.
- W2795470708 hasConceptScore W2795470708C136229726 @default.
- W2795470708 hasConceptScore W2795470708C151337348 @default.
- W2795470708 hasConceptScore W2795470708C159317903 @default.
- W2795470708 hasConceptScore W2795470708C184779094 @default.
- W2795470708 hasConceptScore W2795470708C192562407 @default.
- W2795470708 hasConceptScore W2795470708C19499675 @default.
- W2795470708 hasConceptScore W2795470708C2989005 @default.
- W2795470708 hasConceptScore W2795470708C33923547 @default.
- W2795470708 hasConceptScore W2795470708C34445779 @default.
- W2795470708 hasConceptScore W2795470708C520434653 @default.
- W2795470708 hasConceptScore W2795470708C59919367 @default.
- W2795470708 hasConceptScore W2795470708C61782718 @default.
- W2795470708 hasConceptScore W2795470708C71924100 @default.
- W2795470708 hasConceptScore W2795470708C75088862 @default.
- W2795470708 hasIssue "1" @default.
- W2795470708 hasLocation W27954707081 @default.
- W2795470708 hasLocation W27954707082 @default.
- W2795470708 hasLocation W27954707083 @default.
- W2795470708 hasLocation W27954707084 @default.
- W2795470708 hasLocation W27954707085 @default.
- W2795470708 hasLocation W27954707086 @default.
- W2795470708 hasLocation W27954707087 @default.
- W2795470708 hasOpenAccess W2795470708 @default.
- W2795470708 hasPrimaryLocation W27954707081 @default.
- W2795470708 hasRelatedWork W1890733050 @default.
- W2795470708 hasRelatedWork W1972039558 @default.
- W2795470708 hasRelatedWork W1979629280 @default.
- W2795470708 hasRelatedWork W1986549251 @default.
- W2795470708 hasRelatedWork W2010921321 @default.