Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795692010> ?p ?o ?g. }
- W2795692010 endingPage "6711" @default.
- W2795692010 startingPage "6685" @default.
- W2795692010 abstract "Abstract. The dynamics of biogeochemical models are determined by the mathematical equations used to describe the main biological processes. Earlier studies have shown that small changes in the model formulation may lead to major changes in system dynamics, a property known as structural sensitivity. We assessed the impact of structural sensitivity in a biogeochemical model of intermediate complexity by modelling the chlorophyll and dissolved inorganic nitrogen (DIN) concentrations. The model is run at five different oceanographic stations spanning three different regimes: oligotrophic, coastal, and the abyssal plain, over a 10-year timescale to observe the effect in different regions. A 1-D Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration, and Acidification (MEDUSA) ensemble was used with each ensemble member having a combination of tuned function parameterizations that describe some of the key biogeochemical processes, namely nutrient uptake, zooplankton grazing, and plankton mortalities. The impact is quantified using phytoplankton phenology (initiation, bloom time, peak height, duration, and termination of phytoplankton blooms) and statistical measures such as RMSE (root-mean-squared error), mean, and range for chlorophyll and nutrients. The spread of the ensemble as a measure of uncertainty is assessed against observations using the normalized RMSE ratio (NRR). We found that even small perturbations in model structure can produce large ensemble spreads. The range of 10-year mean surface chlorophyll concentration in the ensemble is between 0.14 and 3.69 mg m−3 at coastal stations, 0.43 and 1.11 mg m−3 on the abyssal plain, and 0.004 and 0.16 mg m−3 at the oligotrophic stations. Changing both phytoplankton and zooplankton mortalities and the grazing functions has the largest impact on chlorophyll concentrations. The in situ measurements of bloom timings, duration, and terminations lie mostly within the ensemble range. The RMSEs between in situ observations and the ensemble mean and median are mostly reduced compared to the default model output. The NRRs for monthly variability suggest that the ensemble spread is generally narrow (NRR 1.21–1.39 for DIN and 1.19–1.39 for chlorophyll profiles, 1.07–1.40 for surface chlorophyll, and 1.01–1.40 for depth-integrated chlorophyll). Among the five stations, the most reliable ensembles are obtained for the oligotrophic station ALOHA (for the surface and integrated chlorophyll and bloom peak height), for coastal station L4 (for inter-annual mean), and for the abyssal plain station PAP (for bloom peak height). Overall our study provides a novel way to generate a realistic ensemble of a biogeochemical model by perturbing the model equations and parameterizations, which will be helpful for the probabilistic predictions." @default.
- W2795692010 created "2018-04-13" @default.
- W2795692010 creator A5001605811 @default.
- W2795692010 creator A5019751510 @default.
- W2795692010 creator A5056700863 @default.
- W2795692010 date "2018-11-12" @default.
- W2795692010 modified "2023-09-27" @default.
- W2795692010 title "A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations" @default.
- W2795692010 cites W1179308211 @default.
- W2795692010 cites W1480119069 @default.
- W2795692010 cites W1493236684 @default.
- W2795692010 cites W1567918462 @default.
- W2795692010 cites W1637123222 @default.
- W2795692010 cites W1780044675 @default.
- W2795692010 cites W1885072938 @default.
- W2795692010 cites W1908030517 @default.
- W2795692010 cites W1964682423 @default.
- W2795692010 cites W1966103417 @default.
- W2795692010 cites W1966636533 @default.
- W2795692010 cites W1980272765 @default.
- W2795692010 cites W1984857689 @default.
- W2795692010 cites W1986620638 @default.
- W2795692010 cites W1986756417 @default.
- W2795692010 cites W1986833941 @default.
- W2795692010 cites W1987707266 @default.
- W2795692010 cites W1988682485 @default.
- W2795692010 cites W1990212435 @default.
- W2795692010 cites W1997631379 @default.
- W2795692010 cites W2004945975 @default.
- W2795692010 cites W2008107379 @default.
- W2795692010 cites W2010655592 @default.
- W2795692010 cites W2010816667 @default.
- W2795692010 cites W2013452663 @default.
- W2795692010 cites W2016613976 @default.
- W2795692010 cites W2030080456 @default.
- W2795692010 cites W2039408468 @default.
- W2795692010 cites W2042376721 @default.
- W2795692010 cites W2044005176 @default.
- W2795692010 cites W2044308796 @default.
- W2795692010 cites W2046360891 @default.
- W2795692010 cites W2048919923 @default.
- W2795692010 cites W2056329779 @default.
- W2795692010 cites W2061046601 @default.
- W2795692010 cites W2061120905 @default.
- W2795692010 cites W2062368555 @default.
- W2795692010 cites W2064674588 @default.
- W2795692010 cites W2066989209 @default.
- W2795692010 cites W2067381317 @default.
- W2795692010 cites W2067526246 @default.
- W2795692010 cites W2067640250 @default.
- W2795692010 cites W2076999219 @default.
- W2795692010 cites W2077769416 @default.
- W2795692010 cites W2081007647 @default.
- W2795692010 cites W2085441678 @default.
- W2795692010 cites W2090589937 @default.
- W2795692010 cites W2096499099 @default.
- W2795692010 cites W2098527552 @default.
- W2795692010 cites W2099105547 @default.
- W2795692010 cites W2101270983 @default.
- W2795692010 cites W2102834528 @default.
- W2795692010 cites W2108998382 @default.
- W2795692010 cites W2112009353 @default.
- W2795692010 cites W2115717916 @default.
- W2795692010 cites W2115868140 @default.
- W2795692010 cites W2117786860 @default.
- W2795692010 cites W2132111366 @default.
- W2795692010 cites W2132803571 @default.
- W2795692010 cites W2133847149 @default.
- W2795692010 cites W2134676522 @default.
- W2795692010 cites W2135818508 @default.
- W2795692010 cites W2141707502 @default.
- W2795692010 cites W2142785903 @default.
- W2795692010 cites W2144656462 @default.
- W2795692010 cites W2145997729 @default.
- W2795692010 cites W2152242311 @default.
- W2795692010 cites W2154889667 @default.
- W2795692010 cites W2158956153 @default.
- W2795692010 cites W2168035179 @default.
- W2795692010 cites W2170153270 @default.
- W2795692010 cites W2170703294 @default.
- W2795692010 cites W2478843252 @default.
- W2795692010 cites W2519009256 @default.
- W2795692010 cites W2519871359 @default.
- W2795692010 cites W2560908555 @default.
- W2795692010 cites W2607129315 @default.
- W2795692010 cites W2753034597 @default.
- W2795692010 cites W2791477064 @default.
- W2795692010 cites W99572445 @default.
- W2795692010 doi "https://doi.org/10.5194/bg-15-6685-2018" @default.
- W2795692010 hasPublicationYear "2018" @default.
- W2795692010 type Work @default.
- W2795692010 sameAs 2795692010 @default.
- W2795692010 citedByCount "4" @default.
- W2795692010 countsByYear W27956920102020 @default.
- W2795692010 countsByYear W27956920102021 @default.
- W2795692010 countsByYear W27956920102022 @default.
- W2795692010 crossrefType "journal-article" @default.
- W2795692010 hasAuthorship W2795692010A5001605811 @default.