Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795692714> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2795692714 abstract "We give metric theorems for the property of Borel normality for real numbers under the assumption of digit dependencies in their expansion in a given integer base. We quantify precisely how much digit dependence can be allowed such that, still, almost all real numbers are normal. Our theorem states that almost all real numbers are normal when at least slightly more than $log log n$ consecutive digits with indices starting at position $n$ are independent. As the main application, we consider the Toeplitz set $T_P$, which is the set of all sequences $a_1a_2 ldots $ of symbols from ${0, ldots, b-1}$ such that $a_n$ is equal to $a_{pn}$, for every $p$ in $P$ and $n=1,2,ldots$. Here $b$ is an integer base and $P$ is a finite set of prime numbers. We show that almost every real number whose base $b$ expansion is in $T_P$ is normal to base $b$. In the case when $P$ is the singleton set ${2}$ we prove that more is true: almost every real number whose base $b$ expansion is in $T_P$ is normal to all integer bases. We also consider the Toeplitz transform which maps the set of all sequences to the set $T_P$ and we characterize the normal sequences whose Toeplitz transform is normal as well." @default.
- W2795692714 created "2018-04-13" @default.
- W2795692714 creator A5025290597 @default.
- W2795692714 creator A5072436621 @default.
- W2795692714 creator A5077924857 @default.
- W2795692714 date "2018-04-09" @default.
- W2795692714 modified "2023-09-26" @default.
- W2795692714 title "Normal numbers with digit dependencies" @default.
- W2795692714 hasPublicationYear "2018" @default.
- W2795692714 type Work @default.
- W2795692714 sameAs 2795692714 @default.
- W2795692714 citedByCount "0" @default.
- W2795692714 crossrefType "posted-content" @default.
- W2795692714 hasAuthorship W2795692714A5025290597 @default.
- W2795692714 hasAuthorship W2795692714A5072436621 @default.
- W2795692714 hasAuthorship W2795692714A5077924857 @default.
- W2795692714 hasConcept C114614502 @default.
- W2795692714 hasConcept C117354338 @default.
- W2795692714 hasConcept C118615104 @default.
- W2795692714 hasConcept C134306372 @default.
- W2795692714 hasConcept C147710293 @default.
- W2795692714 hasConcept C177264268 @default.
- W2795692714 hasConcept C199360897 @default.
- W2795692714 hasConcept C202444582 @default.
- W2795692714 hasConcept C2779234561 @default.
- W2795692714 hasConcept C33923547 @default.
- W2795692714 hasConcept C41008148 @default.
- W2795692714 hasConcept C42058472 @default.
- W2795692714 hasConcept C54355233 @default.
- W2795692714 hasConcept C86803240 @default.
- W2795692714 hasConcept C94020503 @default.
- W2795692714 hasConcept C97137487 @default.
- W2795692714 hasConceptScore W2795692714C114614502 @default.
- W2795692714 hasConceptScore W2795692714C117354338 @default.
- W2795692714 hasConceptScore W2795692714C118615104 @default.
- W2795692714 hasConceptScore W2795692714C134306372 @default.
- W2795692714 hasConceptScore W2795692714C147710293 @default.
- W2795692714 hasConceptScore W2795692714C177264268 @default.
- W2795692714 hasConceptScore W2795692714C199360897 @default.
- W2795692714 hasConceptScore W2795692714C202444582 @default.
- W2795692714 hasConceptScore W2795692714C2779234561 @default.
- W2795692714 hasConceptScore W2795692714C33923547 @default.
- W2795692714 hasConceptScore W2795692714C41008148 @default.
- W2795692714 hasConceptScore W2795692714C42058472 @default.
- W2795692714 hasConceptScore W2795692714C54355233 @default.
- W2795692714 hasConceptScore W2795692714C86803240 @default.
- W2795692714 hasConceptScore W2795692714C94020503 @default.
- W2795692714 hasConceptScore W2795692714C97137487 @default.
- W2795692714 hasLocation W27956927141 @default.
- W2795692714 hasOpenAccess W2795692714 @default.
- W2795692714 hasPrimaryLocation W27956927141 @default.
- W2795692714 hasRelatedWork W1634296214 @default.
- W2795692714 hasRelatedWork W190359095 @default.
- W2795692714 hasRelatedWork W2000807783 @default.
- W2795692714 hasRelatedWork W2024239245 @default.
- W2795692714 hasRelatedWork W2059435071 @default.
- W2795692714 hasRelatedWork W2086429392 @default.
- W2795692714 hasRelatedWork W2106322834 @default.
- W2795692714 hasRelatedWork W2131001520 @default.
- W2795692714 hasRelatedWork W2399137959 @default.
- W2795692714 hasRelatedWork W2950429534 @default.
- W2795692714 hasRelatedWork W2950617132 @default.
- W2795692714 hasRelatedWork W2963416450 @default.
- W2795692714 hasRelatedWork W2963582685 @default.
- W2795692714 hasRelatedWork W2964035821 @default.
- W2795692714 hasRelatedWork W3119999331 @default.
- W2795692714 hasRelatedWork W3126609787 @default.
- W2795692714 hasRelatedWork W3160248697 @default.
- W2795692714 hasRelatedWork W3161246890 @default.
- W2795692714 hasRelatedWork W3177671663 @default.
- W2795692714 hasRelatedWork W3213854822 @default.
- W2795692714 isParatext "false" @default.
- W2795692714 isRetracted "false" @default.
- W2795692714 magId "2795692714" @default.
- W2795692714 workType "article" @default.