Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795709708> ?p ?o ?g. }
- W2795709708 endingPage "181" @default.
- W2795709708 startingPage "167" @default.
- W2795709708 abstract "Several processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, novel porous silk fibroin (SF) scaffolds derived from horseradish peroxidase (HRP)-mediated crosslinking of highly concentrated aqueous SF solution (16 wt%) in combination with salt-leaching and freeze-drying methodologies were developed for articular cartilage tissue engineering (TE) applications. The HRP-crosslinked SF scaffolds presented high porosity (89.3 ± 0.6%), wide pore distribution and high interconnectivity (95.9 ± 0.8%). Moreover, a large swelling capacity and favorable degradation rate were observed up to 30 days, maintaining the porous-like structure and β-sheet conformational integrity obtained with salt-leaching and freeze-drying processing. The in vitro studies supported human adipose-derived stem cells (hASCs) adhesion, proliferation, and high glycosaminoglycans (GAGs) synthesis under chondrogenic culture conditions. Furthermore, the chondrogenic differentiation of hASCs was assessed by the expression of chondrogenic-related markers (collagen type II, Sox-9 and Aggrecan) and deposition of cartilage-specific extracellular matrix for up to 28 days. The cartilage engineered constructs also presented structural integrity as their mechanical properties were improved after chondrogenic culturing. Subcutaneous implantation of the scaffolds in CD-1 mice demonstrated no necrosis or calcification, and deeply tissue ingrowth. Collectively, the structural properties and biological performance of these porous HRP-crosslinked SF scaffolds make them promising candidates for cartilage regeneration.In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration." @default.
- W2795709708 created "2018-04-13" @default.
- W2795709708 creator A5015408416 @default.
- W2795709708 creator A5018203035 @default.
- W2795709708 creator A5030447952 @default.
- W2795709708 creator A5033516731 @default.
- W2795709708 creator A5059578105 @default.
- W2795709708 creator A5062016763 @default.
- W2795709708 creator A5081499203 @default.
- W2795709708 creator A5089949316 @default.
- W2795709708 date "2018-05-01" @default.
- W2795709708 modified "2023-10-18" @default.
- W2795709708 title "Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration" @default.
- W2795709708 cites W1963894721 @default.
- W2795709708 cites W1965350991 @default.
- W2795709708 cites W1965904253 @default.
- W2795709708 cites W1966316996 @default.
- W2795709708 cites W1967089538 @default.
- W2795709708 cites W1969729923 @default.
- W2795709708 cites W1969745998 @default.
- W2795709708 cites W1970656189 @default.
- W2795709708 cites W1975425673 @default.
- W2795709708 cites W1977332839 @default.
- W2795709708 cites W1988592246 @default.
- W2795709708 cites W1993362020 @default.
- W2795709708 cites W2005079126 @default.
- W2795709708 cites W2006519242 @default.
- W2795709708 cites W2007487866 @default.
- W2795709708 cites W2013866357 @default.
- W2795709708 cites W2014891246 @default.
- W2795709708 cites W2015086435 @default.
- W2795709708 cites W2015161209 @default.
- W2795709708 cites W2018028722 @default.
- W2795709708 cites W2019055276 @default.
- W2795709708 cites W2027736364 @default.
- W2795709708 cites W2034115851 @default.
- W2795709708 cites W2041401385 @default.
- W2795709708 cites W2052116137 @default.
- W2795709708 cites W2054541694 @default.
- W2795709708 cites W2064707228 @default.
- W2795709708 cites W2066964365 @default.
- W2795709708 cites W2082296643 @default.
- W2795709708 cites W2084849128 @default.
- W2795709708 cites W2085062813 @default.
- W2795709708 cites W2085662881 @default.
- W2795709708 cites W2085711413 @default.
- W2795709708 cites W2086072387 @default.
- W2795709708 cites W2091107068 @default.
- W2795709708 cites W2095157875 @default.
- W2795709708 cites W2096648574 @default.
- W2795709708 cites W2097478576 @default.
- W2795709708 cites W2102026800 @default.
- W2795709708 cites W2107277218 @default.
- W2795709708 cites W2114302992 @default.
- W2795709708 cites W2119610794 @default.
- W2795709708 cites W2125678423 @default.
- W2795709708 cites W2127324240 @default.
- W2795709708 cites W2138825945 @default.
- W2795709708 cites W2144880605 @default.
- W2795709708 cites W2147210281 @default.
- W2795709708 cites W2151451049 @default.
- W2795709708 cites W2157010935 @default.
- W2795709708 cites W2169220536 @default.
- W2795709708 cites W2172177551 @default.
- W2795709708 cites W2176026591 @default.
- W2795709708 cites W2328236013 @default.
- W2795709708 cites W2336724494 @default.
- W2795709708 cites W2409291844 @default.
- W2795709708 cites W2491259555 @default.
- W2795709708 cites W2491742286 @default.
- W2795709708 cites W2529784053 @default.
- W2795709708 cites W2560153254 @default.
- W2795709708 cites W2581545245 @default.
- W2795709708 cites W2586512251 @default.
- W2795709708 cites W2589443052 @default.
- W2795709708 doi "https://doi.org/10.1016/j.actbio.2018.03.047" @default.
- W2795709708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29626700" @default.
- W2795709708 hasPublicationYear "2018" @default.
- W2795709708 type Work @default.
- W2795709708 sameAs 2795709708 @default.
- W2795709708 citedByCount "86" @default.
- W2795709708 countsByYear W27957097082018 @default.
- W2795709708 countsByYear W27957097082019 @default.
- W2795709708 countsByYear W27957097082020 @default.
- W2795709708 countsByYear W27957097082021 @default.
- W2795709708 countsByYear W27957097082022 @default.
- W2795709708 countsByYear W27957097082023 @default.
- W2795709708 crossrefType "journal-article" @default.
- W2795709708 hasAuthorship W2795709708A5015408416 @default.
- W2795709708 hasAuthorship W2795709708A5018203035 @default.
- W2795709708 hasAuthorship W2795709708A5030447952 @default.
- W2795709708 hasAuthorship W2795709708A5033516731 @default.
- W2795709708 hasAuthorship W2795709708A5059578105 @default.
- W2795709708 hasAuthorship W2795709708A5062016763 @default.
- W2795709708 hasAuthorship W2795709708A5081499203 @default.
- W2795709708 hasAuthorship W2795709708A5089949316 @default.
- W2795709708 hasBestOaLocation W27957097082 @default.
- W2795709708 hasConcept C105702510 @default.