Matches in SemOpenAlex for { <https://semopenalex.org/work/W2795859926> ?p ?o ?g. }
- W2795859926 endingPage "93" @default.
- W2795859926 startingPage "82" @default.
- W2795859926 abstract "To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent subproblems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal." @default.
- W2795859926 created "2018-04-13" @default.
- W2795859926 creator A5010781360 @default.
- W2795859926 creator A5015102287 @default.
- W2795859926 creator A5023048207 @default.
- W2795859926 creator A5036881926 @default.
- W2795859926 creator A5039395705 @default.
- W2795859926 creator A5059217582 @default.
- W2795859926 creator A5079847660 @default.
- W2795859926 date "2019-01-01" @default.
- W2795859926 modified "2023-10-17" @default.
- W2795859926 title "Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment" @default.
- W2795859926 cites W1966683033 @default.
- W2795859926 cites W1987483509 @default.
- W2795859926 cites W1990199184 @default.
- W2795859926 cites W1994840101 @default.
- W2795859926 cites W1995086170 @default.
- W2795859926 cites W2021797993 @default.
- W2795859926 cites W2022170371 @default.
- W2795859926 cites W2055900399 @default.
- W2795859926 cites W2059792929 @default.
- W2795859926 cites W2062343321 @default.
- W2795859926 cites W2063075683 @default.
- W2795859926 cites W2067108585 @default.
- W2795859926 cites W2068131226 @default.
- W2795859926 cites W2086691266 @default.
- W2795859926 cites W2089953380 @default.
- W2795859926 cites W2096548866 @default.
- W2795859926 cites W2097535806 @default.
- W2795859926 cites W2098854737 @default.
- W2795859926 cites W2106424475 @default.
- W2795859926 cites W2113810680 @default.
- W2795859926 cites W2117799989 @default.
- W2795859926 cites W2121275441 @default.
- W2795859926 cites W2125790010 @default.
- W2795859926 cites W2130166329 @default.
- W2795859926 cites W2135131968 @default.
- W2795859926 cites W2145334893 @default.
- W2795859926 cites W2146926333 @default.
- W2795859926 cites W2151916800 @default.
- W2795859926 cites W2152282461 @default.
- W2795859926 cites W2158238776 @default.
- W2795859926 cites W2159613153 @default.
- W2795859926 cites W2166556685 @default.
- W2795859926 cites W2175195964 @default.
- W2795859926 cites W2205708137 @default.
- W2795859926 cites W2213622842 @default.
- W2795859926 cites W2273551888 @default.
- W2795859926 cites W2310130856 @default.
- W2795859926 cites W2317558501 @default.
- W2795859926 cites W2337315713 @default.
- W2795859926 cites W2344176337 @default.
- W2795859926 cites W2346013421 @default.
- W2795859926 cites W2374131623 @default.
- W2795859926 cites W2397371338 @default.
- W2795859926 cites W2666717691 @default.
- W2795859926 cites W2742900359 @default.
- W2795859926 cites W2962926869 @default.
- W2795859926 cites W2963141197 @default.
- W2795859926 doi "https://doi.org/10.1109/tste.2018.2825361" @default.
- W2795859926 hasPublicationYear "2019" @default.
- W2795859926 type Work @default.
- W2795859926 sameAs 2795859926 @default.
- W2795859926 citedByCount "69" @default.
- W2795859926 countsByYear W27958599262019 @default.
- W2795859926 countsByYear W27958599262020 @default.
- W2795859926 countsByYear W27958599262021 @default.
- W2795859926 countsByYear W27958599262022 @default.
- W2795859926 countsByYear W27958599262023 @default.
- W2795859926 crossrefType "journal-article" @default.
- W2795859926 hasAuthorship W2795859926A5010781360 @default.
- W2795859926 hasAuthorship W2795859926A5015102287 @default.
- W2795859926 hasAuthorship W2795859926A5023048207 @default.
- W2795859926 hasAuthorship W2795859926A5036881926 @default.
- W2795859926 hasAuthorship W2795859926A5039395705 @default.
- W2795859926 hasAuthorship W2795859926A5059217582 @default.
- W2795859926 hasAuthorship W2795859926A5079847660 @default.
- W2795859926 hasBestOaLocation W27958599262 @default.
- W2795859926 hasConcept C118615104 @default.
- W2795859926 hasConcept C122637931 @default.
- W2795859926 hasConcept C124681953 @default.
- W2795859926 hasConcept C126255220 @default.
- W2795859926 hasConcept C144237770 @default.
- W2795859926 hasConcept C145420912 @default.
- W2795859926 hasConcept C178790620 @default.
- W2795859926 hasConcept C185592680 @default.
- W2795859926 hasConcept C2778023678 @default.
- W2795859926 hasConcept C28826006 @default.
- W2795859926 hasConcept C33923547 @default.
- W2795859926 hasConcept C41008148 @default.
- W2795859926 hasConceptScore W2795859926C118615104 @default.
- W2795859926 hasConceptScore W2795859926C122637931 @default.
- W2795859926 hasConceptScore W2795859926C124681953 @default.
- W2795859926 hasConceptScore W2795859926C126255220 @default.
- W2795859926 hasConceptScore W2795859926C144237770 @default.
- W2795859926 hasConceptScore W2795859926C145420912 @default.
- W2795859926 hasConceptScore W2795859926C178790620 @default.
- W2795859926 hasConceptScore W2795859926C185592680 @default.