Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796104279> ?p ?o ?g. }
- W2796104279 endingPage "190" @default.
- W2796104279 startingPage "190" @default.
- W2796104279 abstract "Understanding the linkage between accumulated fuel dryness and temporal fire occurrence risk is key for improving decision-making in forest fire management, especially under growing conditions of vegetation stress associated with climate change. This study addresses the development of models to predict the number of 10-day observed Moderate-Resolution Imaging Spectroradiometer (MODIS) active fire hotspots—expressed as a Fire Hotspot Density index (FHD)—from an Accumulated Fuel Dryness Index (AcFDI), for 17 main vegetation types and regions in Mexico, for the period 2011–2015. The AcFDI was calculated by applying vegetation-specific thresholds for fire occurrence to a satellite-based fuel dryness index (FDI), which was developed after the structure of the Fire Potential Index (FPI). Linear and non-linear models were tested for the prediction of FHD from FDI and AcFDI. Non-linear quantile regression models gave the best results for predicting FHD using AcFDI, together with auto-regression from previously observed hotspot density values. The predictions of 10-day observed FHD values were reasonably good with R2 values of 0.5 to 0.7 suggesting the potential to be used as an operational tool for predicting the expected number of fire hotspots by vegetation type and region in Mexico. The presented modeling strategy could be replicated for any fire danger index in any region, based on information from MODIS or other remote sensors." @default.
- W2796104279 created "2018-04-13" @default.
- W2796104279 creator A5001454901 @default.
- W2796104279 creator A5019842163 @default.
- W2796104279 creator A5020195722 @default.
- W2796104279 creator A5022933167 @default.
- W2796104279 creator A5030254326 @default.
- W2796104279 creator A5031876776 @default.
- W2796104279 creator A5044797032 @default.
- W2796104279 creator A5049221054 @default.
- W2796104279 creator A5050892181 @default.
- W2796104279 creator A5051422496 @default.
- W2796104279 creator A5052266650 @default.
- W2796104279 creator A5054082513 @default.
- W2796104279 creator A5061585094 @default.
- W2796104279 creator A5061884898 @default.
- W2796104279 creator A5063328975 @default.
- W2796104279 creator A5077985380 @default.
- W2796104279 creator A5081827548 @default.
- W2796104279 date "2018-04-07" @default.
- W2796104279 modified "2023-10-04" @default.
- W2796104279 title "Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico" @default.
- W2796104279 cites W1523918168 @default.
- W2796104279 cites W1550186934 @default.
- W2796104279 cites W1567594062 @default.
- W2796104279 cites W1605323303 @default.
- W2796104279 cites W1664178405 @default.
- W2796104279 cites W1964252479 @default.
- W2796104279 cites W1966272358 @default.
- W2796104279 cites W1974844467 @default.
- W2796104279 cites W1984570338 @default.
- W2796104279 cites W1987393829 @default.
- W2796104279 cites W1992971684 @default.
- W2796104279 cites W1996061502 @default.
- W2796104279 cites W2001330731 @default.
- W2796104279 cites W2005028768 @default.
- W2796104279 cites W2009783321 @default.
- W2796104279 cites W2010150056 @default.
- W2796104279 cites W2011452308 @default.
- W2796104279 cites W2022637976 @default.
- W2796104279 cites W2026415375 @default.
- W2796104279 cites W2040258544 @default.
- W2796104279 cites W2044573020 @default.
- W2796104279 cites W2048585368 @default.
- W2796104279 cites W2050445739 @default.
- W2796104279 cites W2054290328 @default.
- W2796104279 cites W2056496234 @default.
- W2796104279 cites W2065577834 @default.
- W2796104279 cites W2069017115 @default.
- W2796104279 cites W2086155508 @default.
- W2796104279 cites W2089341938 @default.
- W2796104279 cites W2090764910 @default.
- W2796104279 cites W2092884183 @default.
- W2796104279 cites W2093355138 @default.
- W2796104279 cites W2094812097 @default.
- W2796104279 cites W2100119227 @default.
- W2796104279 cites W2103782736 @default.
- W2796104279 cites W2115506886 @default.
- W2796104279 cites W2118922738 @default.
- W2796104279 cites W2124606751 @default.
- W2796104279 cites W2126862358 @default.
- W2796104279 cites W2129184898 @default.
- W2796104279 cites W2132809245 @default.
- W2796104279 cites W2135072911 @default.
- W2796104279 cites W2139805358 @default.
- W2796104279 cites W2144678239 @default.
- W2796104279 cites W2149709532 @default.
- W2796104279 cites W2152523941 @default.
- W2796104279 cites W2158054910 @default.
- W2796104279 cites W2161849372 @default.
- W2796104279 cites W2162630548 @default.
- W2796104279 cites W2165977355 @default.
- W2796104279 cites W2166488942 @default.
- W2796104279 cites W2173532158 @default.
- W2796104279 cites W2185499656 @default.
- W2796104279 cites W2401580071 @default.
- W2796104279 cites W2617346956 @default.
- W2796104279 cites W2767907459 @default.
- W2796104279 cites W2052686292 @default.
- W2796104279 doi "https://doi.org/10.3390/f9040190" @default.
- W2796104279 hasPublicationYear "2018" @default.
- W2796104279 type Work @default.
- W2796104279 sameAs 2796104279 @default.
- W2796104279 citedByCount "14" @default.
- W2796104279 countsByYear W27961042792019 @default.
- W2796104279 countsByYear W27961042792020 @default.
- W2796104279 countsByYear W27961042792021 @default.
- W2796104279 countsByYear W27961042792022 @default.
- W2796104279 countsByYear W27961042792023 @default.
- W2796104279 crossrefType "journal-article" @default.
- W2796104279 hasAuthorship W2796104279A5001454901 @default.
- W2796104279 hasAuthorship W2796104279A5019842163 @default.
- W2796104279 hasAuthorship W2796104279A5020195722 @default.
- W2796104279 hasAuthorship W2796104279A5022933167 @default.
- W2796104279 hasAuthorship W2796104279A5030254326 @default.
- W2796104279 hasAuthorship W2796104279A5031876776 @default.
- W2796104279 hasAuthorship W2796104279A5044797032 @default.
- W2796104279 hasAuthorship W2796104279A5049221054 @default.