Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796108540> ?p ?o ?g. }
- W2796108540 endingPage "859" @default.
- W2796108540 startingPage "839" @default.
- W2796108540 abstract "Tree mortality caused by outbreaks of the bark beetle Ips typographus (L.) plays an important role in the natural dynamics of Norway spruce (Picea abies L.) stands, which could cause far-reaching changes in the occurrence and duration of vegetation phenology. Field-based early detection of tree disturbances is hampered by logistic, terrain, and technical shortcomings, and by the inability to continuously monitor disturbances over large areas. Despite achievements in remote mapping of bark-beetle-induced tree mortalities, early warning has been mostly unsuccessful mainly because of the lack of spectral sensitivity and discrepancies in definitions of field- and image-based disturbance classes. Here we applied a method based on inter-annual phenology of Norway spruce stands derived from synthetic multispectral data to part of the Bavarian Forest National Park in Germany. We fused temporally continuous Moderate Resolution Imaging Spectroradiometer and discrete RapidEye data using a flexible spatiotemporal data fusion method to achieve validated 8-day RapidEye-like composites of normalized difference vegetation index for 2011. We assumed that the dead trees delineated on 2012 aerial photographs were those in which bark beetle infestations were initiated in 2011. Samples were drawn with variable-sized buffering to represent the areas prone to infestations and their surroundings. We applied a conditional inference random forest to select the best image date among the entire 46 synthetic datasets to best discriminate between the core infestation patches and their surroundings from the subsequent year. Of the discrete time points identified, day 281 of the year represented the highest discrepancy between aerial image-based dead trees and their surroundings. Classification results were significantly correlated with beetle count data obtained using pheromone traps. Our method provided valuable information for management purposes and enabled wall-to-wall mapping of stands prone to infestation and its uncertainty. The results offer potential implications for rapid and cost-effective monitoring of bark beetle outbreaks using satellite data, which would be of great benefit for both management and research tasks." @default.
- W2796108540 created "2018-04-13" @default.
- W2796108540 creator A5006620203 @default.
- W2796108540 creator A5026481459 @default.
- W2796108540 creator A5027527228 @default.
- W2796108540 creator A5033795271 @default.
- W2796108540 creator A5034337673 @default.
- W2796108540 creator A5046078730 @default.
- W2796108540 date "2018-04-04" @default.
- W2796108540 modified "2023-10-02" @default.
- W2796108540 title "Synthetic RapidEye data used for the detection of area-based spruce tree mortality induced by bark beetles" @default.
- W2796108540 cites W1535541538 @default.
- W2796108540 cites W1569476219 @default.
- W2796108540 cites W1606287664 @default.
- W2796108540 cites W1614886892 @default.
- W2796108540 cites W1981429983 @default.
- W2796108540 cites W1982956952 @default.
- W2796108540 cites W1983576241 @default.
- W2796108540 cites W1989793686 @default.
- W2796108540 cites W1995859886 @default.
- W2796108540 cites W2009202065 @default.
- W2796108540 cites W2009308504 @default.
- W2796108540 cites W2016300528 @default.
- W2796108540 cites W2024935444 @default.
- W2796108540 cites W2030448618 @default.
- W2796108540 cites W2036017089 @default.
- W2796108540 cites W2044740371 @default.
- W2796108540 cites W2048773673 @default.
- W2796108540 cites W2053943079 @default.
- W2796108540 cites W2056576454 @default.
- W2796108540 cites W2056811372 @default.
- W2796108540 cites W2060944210 @default.
- W2796108540 cites W2072861672 @default.
- W2796108540 cites W2073141228 @default.
- W2796108540 cites W2076039876 @default.
- W2796108540 cites W2076168387 @default.
- W2796108540 cites W2076529272 @default.
- W2796108540 cites W2079594423 @default.
- W2796108540 cites W2081241862 @default.
- W2796108540 cites W2082217331 @default.
- W2796108540 cites W2082263501 @default.
- W2796108540 cites W2084988036 @default.
- W2796108540 cites W2088603520 @default.
- W2796108540 cites W2090417555 @default.
- W2796108540 cites W2098694600 @default.
- W2796108540 cites W2100290684 @default.
- W2796108540 cites W2111787810 @default.
- W2796108540 cites W2113503197 @default.
- W2796108540 cites W2114844225 @default.
- W2796108540 cites W2115838093 @default.
- W2796108540 cites W2129980173 @default.
- W2796108540 cites W2130239832 @default.
- W2796108540 cites W2157946430 @default.
- W2796108540 cites W2163541402 @default.
- W2796108540 cites W2168661809 @default.
- W2796108540 cites W2200350976 @default.
- W2796108540 cites W2325657342 @default.
- W2796108540 cites W2331906176 @default.
- W2796108540 cites W2408286848 @default.
- W2796108540 cites W2511290388 @default.
- W2796108540 cites W2513305480 @default.
- W2796108540 cites W2514092235 @default.
- W2796108540 cites W2548927735 @default.
- W2796108540 cites W2564947386 @default.
- W2796108540 cites W2572348253 @default.
- W2796108540 cites W2586222214 @default.
- W2796108540 cites W2606093983 @default.
- W2796108540 cites W2760577391 @default.
- W2796108540 cites W4244763547 @default.
- W2796108540 cites W4247553234 @default.
- W2796108540 doi "https://doi.org/10.1080/15481603.2018.1458463" @default.
- W2796108540 hasPublicationYear "2018" @default.
- W2796108540 type Work @default.
- W2796108540 sameAs 2796108540 @default.
- W2796108540 citedByCount "23" @default.
- W2796108540 countsByYear W27961085402019 @default.
- W2796108540 countsByYear W27961085402020 @default.
- W2796108540 countsByYear W27961085402021 @default.
- W2796108540 countsByYear W27961085402022 @default.
- W2796108540 countsByYear W27961085402023 @default.
- W2796108540 crossrefType "journal-article" @default.
- W2796108540 hasAuthorship W2796108540A5006620203 @default.
- W2796108540 hasAuthorship W2796108540A5026481459 @default.
- W2796108540 hasAuthorship W2796108540A5027527228 @default.
- W2796108540 hasAuthorship W2796108540A5033795271 @default.
- W2796108540 hasAuthorship W2796108540A5034337673 @default.
- W2796108540 hasAuthorship W2796108540A5046078730 @default.
- W2796108540 hasConcept C132651083 @default.
- W2796108540 hasConcept C133446333 @default.
- W2796108540 hasConcept C142724271 @default.
- W2796108540 hasConcept C144027150 @default.
- W2796108540 hasConcept C1549246 @default.
- W2796108540 hasConcept C173163844 @default.
- W2796108540 hasConcept C181843262 @default.
- W2796108540 hasConcept C18903297 @default.
- W2796108540 hasConcept C205649164 @default.
- W2796108540 hasConcept C2776133958 @default.
- W2796108540 hasConcept C2776451879 @default.