Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796132322> ?p ?o ?g. }
- W2796132322 abstract "This work introduces a novel estimation method, called LOVE, of the entries and structure of a loading matrix A in a sparse latent factor model X = AZ + E, for an observable random vector X in Rp, with correlated unobservable factors Z in RK, with K unknown, and independent noise E. Each row of A is scaled and sparse. In order to identify the loading matrix A, we require the existence of pure variables, which are components of X that are associated, via A, with one and only one latent factor. Despite the fact that the number of factors K, the number of the pure variables, and their location are all unknown, we only require a mild condition on the covariance matrix of Z, and a minimum of only two pure variables per latent factor to show that A is uniquely defined, up to signed permutations. Our proofs for model identifiability are constructive, and lead to our novel estimation method of the number of factors and of the set of pure variables, from a sample of size n of observations on X. This is the first step of our LOVE algorithm, which is optimization-free, and has low computational complexity of order p2. The second step of LOVE is an easily implementable linear program that estimates A. We prove that the resulting estimator is minimax rate optimal up to logarithmic factors in p. The model structure is motivated by the problem of overlapping variable clustering, ubiquitous in data science. We define the population level clusters as groups of those components of X that are associated, via the sparse matrix A, with the same unobservable latent factor, and multi-factor association is allowed. Clusters are respectively anchored by the pure variables, and form overlapping sub-groups of the p-dimensional random vector X. The Latent model approach to OVErlapping clustering is reflected in the name of our algorithm, LOVE." @default.
- W2796132322 created "2018-04-13" @default.
- W2796132322 creator A5021259214 @default.
- W2796132322 creator A5050333855 @default.
- W2796132322 creator A5057473211 @default.
- W2796132322 creator A5070406375 @default.
- W2796132322 date "2017-04-23" @default.
- W2796132322 modified "2023-09-27" @default.
- W2796132322 title "Adaptive Estimation in Structured Factor Models with Applications to Overlapping Clustering" @default.
- W2796132322 cites W1511694993 @default.
- W2796132322 cites W1656622334 @default.
- W2796132322 cites W1748168094 @default.
- W2796132322 cites W1821811819 @default.
- W2796132322 cites W1862068047 @default.
- W2796132322 cites W1968135884 @default.
- W2796132322 cites W1989727964 @default.
- W2796132322 cites W2004288406 @default.
- W2796132322 cites W2011396616 @default.
- W2796132322 cites W2016227990 @default.
- W2796132322 cites W2028305748 @default.
- W2796132322 cites W2029721016 @default.
- W2796132322 cites W2040373108 @default.
- W2796132322 cites W2041626758 @default.
- W2796132322 cites W2053609837 @default.
- W2796132322 cites W2059334100 @default.
- W2796132322 cites W2063698478 @default.
- W2796132322 cites W2076818396 @default.
- W2796132322 cites W2080403608 @default.
- W2796132322 cites W2081746825 @default.
- W2796132322 cites W2103017472 @default.
- W2796132322 cites W2113076747 @default.
- W2796132322 cites W2122457251 @default.
- W2796132322 cites W2131083915 @default.
- W2796132322 cites W2132555912 @default.
- W2796132322 cites W2133999891 @default.
- W2796132322 cites W2136753665 @default.
- W2796132322 cites W2141012957 @default.
- W2796132322 cites W2145962650 @default.
- W2796132322 cites W2155813684 @default.
- W2796132322 cites W2156452366 @default.
- W2796132322 cites W2157820287 @default.
- W2796132322 cites W2159706540 @default.
- W2796132322 cites W2262188337 @default.
- W2796132322 cites W2333867214 @default.
- W2796132322 cites W2432836740 @default.
- W2796132322 cites W2591778798 @default.
- W2796132322 cites W2951734015 @default.
- W2796132322 cites W2963625764 @default.
- W2796132322 cites W2963943660 @default.
- W2796132322 cites W2964061037 @default.
- W2796132322 cites W3008306357 @default.
- W2796132322 cites W3018018008 @default.
- W2796132322 cites W3100350825 @default.
- W2796132322 cites W3102567422 @default.
- W2796132322 cites W3104624268 @default.
- W2796132322 doi "https://doi.org/10.48550/arxiv.1704.06977" @default.
- W2796132322 hasPublicationYear "2017" @default.
- W2796132322 type Work @default.
- W2796132322 sameAs 2796132322 @default.
- W2796132322 citedByCount "0" @default.
- W2796132322 crossrefType "posted-content" @default.
- W2796132322 hasAuthorship W2796132322A5021259214 @default.
- W2796132322 hasAuthorship W2796132322A5050333855 @default.
- W2796132322 hasAuthorship W2796132322A5057473211 @default.
- W2796132322 hasAuthorship W2796132322A5070406375 @default.
- W2796132322 hasBestOaLocation W27961323221 @default.
- W2796132322 hasConcept C105795698 @default.
- W2796132322 hasConcept C106487976 @default.
- W2796132322 hasConcept C10879293 @default.
- W2796132322 hasConcept C11413529 @default.
- W2796132322 hasConcept C114614502 @default.
- W2796132322 hasConcept C122770356 @default.
- W2796132322 hasConcept C126255220 @default.
- W2796132322 hasConcept C134306372 @default.
- W2796132322 hasConcept C144024400 @default.
- W2796132322 hasConcept C149728462 @default.
- W2796132322 hasConcept C149782125 @default.
- W2796132322 hasConcept C149923435 @default.
- W2796132322 hasConcept C159985019 @default.
- W2796132322 hasConcept C178650346 @default.
- W2796132322 hasConcept C185142706 @default.
- W2796132322 hasConcept C185429906 @default.
- W2796132322 hasConcept C192562407 @default.
- W2796132322 hasConcept C2780695315 @default.
- W2796132322 hasConcept C28826006 @default.
- W2796132322 hasConcept C2908647359 @default.
- W2796132322 hasConcept C33923547 @default.
- W2796132322 hasConcept C39927690 @default.
- W2796132322 hasConcept C51167844 @default.
- W2796132322 hasConcept C73555534 @default.
- W2796132322 hasConceptScore W2796132322C105795698 @default.
- W2796132322 hasConceptScore W2796132322C106487976 @default.
- W2796132322 hasConceptScore W2796132322C10879293 @default.
- W2796132322 hasConceptScore W2796132322C11413529 @default.
- W2796132322 hasConceptScore W2796132322C114614502 @default.
- W2796132322 hasConceptScore W2796132322C122770356 @default.
- W2796132322 hasConceptScore W2796132322C126255220 @default.
- W2796132322 hasConceptScore W2796132322C134306372 @default.
- W2796132322 hasConceptScore W2796132322C144024400 @default.
- W2796132322 hasConceptScore W2796132322C149728462 @default.