Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796180279> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2796180279 abstract "Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged." @default.
- W2796180279 created "2018-04-13" @default.
- W2796180279 creator A5089172194 @default.
- W2796180279 date "2009-01-01" @default.
- W2796180279 modified "2023-09-27" @default.
- W2796180279 title "Discussion on Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations by H. Rue, S. Martino and Nicolas Chopin" @default.
- W2796180279 hasPublicationYear "2009" @default.
- W2796180279 type Work @default.
- W2796180279 sameAs 2796180279 @default.
- W2796180279 citedByCount "0" @default.
- W2796180279 crossrefType "journal-article" @default.
- W2796180279 hasAuthorship W2796180279A5089172194 @default.
- W2796180279 hasConcept C105795698 @default.
- W2796180279 hasConcept C107673813 @default.
- W2796180279 hasConcept C111350023 @default.
- W2796180279 hasConcept C11413529 @default.
- W2796180279 hasConcept C121332964 @default.
- W2796180279 hasConcept C126255220 @default.
- W2796180279 hasConcept C160234255 @default.
- W2796180279 hasConcept C163716315 @default.
- W2796180279 hasConcept C22243797 @default.
- W2796180279 hasConcept C28826006 @default.
- W2796180279 hasConcept C33923547 @default.
- W2796180279 hasConcept C41008148 @default.
- W2796180279 hasConcept C61326573 @default.
- W2796180279 hasConcept C62520636 @default.
- W2796180279 hasConcept C8642999 @default.
- W2796180279 hasConcept C98763669 @default.
- W2796180279 hasConceptScore W2796180279C105795698 @default.
- W2796180279 hasConceptScore W2796180279C107673813 @default.
- W2796180279 hasConceptScore W2796180279C111350023 @default.
- W2796180279 hasConceptScore W2796180279C11413529 @default.
- W2796180279 hasConceptScore W2796180279C121332964 @default.
- W2796180279 hasConceptScore W2796180279C126255220 @default.
- W2796180279 hasConceptScore W2796180279C160234255 @default.
- W2796180279 hasConceptScore W2796180279C163716315 @default.
- W2796180279 hasConceptScore W2796180279C22243797 @default.
- W2796180279 hasConceptScore W2796180279C28826006 @default.
- W2796180279 hasConceptScore W2796180279C33923547 @default.
- W2796180279 hasConceptScore W2796180279C41008148 @default.
- W2796180279 hasConceptScore W2796180279C61326573 @default.
- W2796180279 hasConceptScore W2796180279C62520636 @default.
- W2796180279 hasConceptScore W2796180279C8642999 @default.
- W2796180279 hasConceptScore W2796180279C98763669 @default.
- W2796180279 hasLocation W27961802791 @default.
- W2796180279 hasOpenAccess W2796180279 @default.
- W2796180279 hasPrimaryLocation W27961802791 @default.
- W2796180279 hasRelatedWork W1510426546 @default.
- W2796180279 hasRelatedWork W1857729084 @default.
- W2796180279 hasRelatedWork W2136097307 @default.
- W2796180279 hasRelatedWork W2157404564 @default.
- W2796180279 hasRelatedWork W2344676630 @default.
- W2796180279 hasRelatedWork W2553315083 @default.
- W2796180279 hasRelatedWork W2757830207 @default.
- W2796180279 hasRelatedWork W2789818596 @default.
- W2796180279 hasRelatedWork W2910559903 @default.
- W2796180279 hasRelatedWork W2949231827 @default.
- W2796180279 hasRelatedWork W2952813155 @default.
- W2796180279 hasRelatedWork W2963303935 @default.
- W2796180279 hasRelatedWork W2963983664 @default.
- W2796180279 hasRelatedWork W2972178929 @default.
- W2796180279 hasRelatedWork W3007104630 @default.
- W2796180279 hasRelatedWork W3032694247 @default.
- W2796180279 hasRelatedWork W3081737559 @default.
- W2796180279 hasRelatedWork W3084427384 @default.
- W2796180279 hasRelatedWork W3103714082 @default.
- W2796180279 hasRelatedWork W3168194744 @default.
- W2796180279 isParatext "false" @default.
- W2796180279 isRetracted "false" @default.
- W2796180279 magId "2796180279" @default.
- W2796180279 workType "article" @default.