Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796220501> ?p ?o ?g. }
- W2796220501 endingPage "935" @default.
- W2796220501 startingPage "921" @default.
- W2796220501 abstract "This paper develops the optimal causal path algorithm and applies it within a fully-fledged statistical arbitrage framework to minute-by-minute data of the S&P 500 constituents from 1998 to 2015. Specifically, the algorithm efficiently determines the optimal non-linear mapping and the corresponding lead–lag structure between two time series. Afterwards, this study explores the use of optimal causal paths as a means for identifying promising stock pairs and for generating buy and sell signals. For this purpose, the established trading strategy exploits information about the leading stock to predict future returns of the following stock. The value-add of the proposed framework is assessed by benchmarking it with variants relying on classic similarity measures and a buy-and-hold investment in the S&P 500 index. In the empirical back-testing study, the trading algorithm generates statistically and economically significant returns of 54.98% p.a. and an annualized Sharpe ratio of 3.57 after transaction costs. Returns are well superior to the benchmark approaches and do not load on any common sources of systematic risk. The strategy outperforms in the context of cryptocurrencies even in recent times due to the fact that stock returns contain substantial information about the future bitcoin returns." @default.
- W2796220501 created "2018-04-13" @default.
- W2796220501 creator A5070343025 @default.
- W2796220501 date "2018-11-14" @default.
- W2796220501 modified "2023-10-06" @default.
- W2796220501 title "Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500" @default.
- W2796220501 cites W170732776 @default.
- W2796220501 cites W1883126638 @default.
- W2796220501 cites W1965766592 @default.
- W2796220501 cites W1989666608 @default.
- W2796220501 cites W1989977532 @default.
- W2796220501 cites W2000538464 @default.
- W2796220501 cites W2012615794 @default.
- W2796220501 cites W2026030280 @default.
- W2796220501 cites W2027066766 @default.
- W2796220501 cites W2036887984 @default.
- W2796220501 cites W2091921805 @default.
- W2796220501 cites W2100011707 @default.
- W2796220501 cites W2113305199 @default.
- W2796220501 cites W2125472587 @default.
- W2796220501 cites W2128160875 @default.
- W2796220501 cites W2137089646 @default.
- W2796220501 cites W2137344397 @default.
- W2796220501 cites W2139106564 @default.
- W2796220501 cites W2144994235 @default.
- W2796220501 cites W2149558700 @default.
- W2796220501 cites W2162338668 @default.
- W2796220501 cites W2164463707 @default.
- W2796220501 cites W2165253089 @default.
- W2796220501 cites W2242382260 @default.
- W2796220501 cites W2255228704 @default.
- W2796220501 cites W2326727351 @default.
- W2796220501 cites W2563586898 @default.
- W2796220501 cites W2568147658 @default.
- W2796220501 cites W2638576872 @default.
- W2796220501 cites W2745188987 @default.
- W2796220501 cites W2952487919 @default.
- W2796220501 cites W3095114851 @default.
- W2796220501 cites W3101753548 @default.
- W2796220501 cites W3121242749 @default.
- W2796220501 cites W3122010751 @default.
- W2796220501 cites W3122035786 @default.
- W2796220501 cites W3123041092 @default.
- W2796220501 cites W3123585927 @default.
- W2796220501 cites W3124018109 @default.
- W2796220501 cites W3125051887 @default.
- W2796220501 cites W3125285662 @default.
- W2796220501 cites W3125495861 @default.
- W2796220501 cites W3125881508 @default.
- W2796220501 cites W4237239309 @default.
- W2796220501 doi "https://doi.org/10.1080/14697688.2018.1537503" @default.
- W2796220501 hasPublicationYear "2018" @default.
- W2796220501 type Work @default.
- W2796220501 sameAs 2796220501 @default.
- W2796220501 citedByCount "33" @default.
- W2796220501 countsByYear W27962205012017 @default.
- W2796220501 countsByYear W27962205012018 @default.
- W2796220501 countsByYear W27962205012019 @default.
- W2796220501 countsByYear W27962205012020 @default.
- W2796220501 countsByYear W27962205012021 @default.
- W2796220501 countsByYear W27962205012022 @default.
- W2796220501 countsByYear W27962205012023 @default.
- W2796220501 crossrefType "journal-article" @default.
- W2796220501 hasAuthorship W2796220501A5070343025 @default.
- W2796220501 hasConcept C10138342 @default.
- W2796220501 hasConcept C103144560 @default.
- W2796220501 hasConcept C106159729 @default.
- W2796220501 hasConcept C127413603 @default.
- W2796220501 hasConcept C131562839 @default.
- W2796220501 hasConcept C139938925 @default.
- W2796220501 hasConcept C142450864 @default.
- W2796220501 hasConcept C149782125 @default.
- W2796220501 hasConcept C158876240 @default.
- W2796220501 hasConcept C160623529 @default.
- W2796220501 hasConcept C162324750 @default.
- W2796220501 hasConcept C167416602 @default.
- W2796220501 hasConcept C172428447 @default.
- W2796220501 hasConcept C180706569 @default.
- W2796220501 hasConcept C181236170 @default.
- W2796220501 hasConcept C183582576 @default.
- W2796220501 hasConcept C204036174 @default.
- W2796220501 hasConcept C2780821815 @default.
- W2796220501 hasConcept C38652104 @default.
- W2796220501 hasConcept C41008148 @default.
- W2796220501 hasConcept C42854785 @default.
- W2796220501 hasConcept C78508483 @default.
- W2796220501 hasConcept C78519656 @default.
- W2796220501 hasConceptScore W2796220501C10138342 @default.
- W2796220501 hasConceptScore W2796220501C103144560 @default.
- W2796220501 hasConceptScore W2796220501C106159729 @default.
- W2796220501 hasConceptScore W2796220501C127413603 @default.
- W2796220501 hasConceptScore W2796220501C131562839 @default.
- W2796220501 hasConceptScore W2796220501C139938925 @default.
- W2796220501 hasConceptScore W2796220501C142450864 @default.
- W2796220501 hasConceptScore W2796220501C149782125 @default.
- W2796220501 hasConceptScore W2796220501C158876240 @default.
- W2796220501 hasConceptScore W2796220501C160623529 @default.
- W2796220501 hasConceptScore W2796220501C162324750 @default.