Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796355688> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2796355688 endingPage "119" @default.
- W2796355688 startingPage "111" @default.
- W2796355688 abstract "Over the past few decades, inducing of ground vibrations from blasting may cause severe damage to surrounding structures, plants, and human beings in the mining industry. Therefore, it is essential to monitor and predict the ambiguous vibration levels and take measures to reduce their hazardous effect. In this study, to evaluate and predict the ambiguous ground vibrations, an application of artificial neural network technique was used. A three-layer, feed-forward back-propagation multilayer perception neural network having six input parameters, the distance from blast face, maximum charge per delay, spacing, burden, hole depth and a number of holes, and one output: peak particle velocity, was used and trained with the Levenberg–Marquardt algorithm using 25 experimental and blast event records from the iron ore mine A, India. To determine the efficiency and accuracy of the developed artificial neural network model, seven conventional predictor models proposed by the US Bureau of Mines, Ambraseys–Hendron, Langefors–Kihlstrom, general predictor, Ghosh–Daemen predictor, cardiac magnetic resonance imaging (CMRI) predictor, Bureau of Indian Standards, as well as multiple linear regression, were applied to establish a relation between peak particle velocity and its influencing parameters. The obtained results reveal that the proposed artificial neural network model can estimate ground vibrations more accurately as compared with the various conventional predictor models available. Coefficient of determination (R 2 ) and root mean square error indices were obtained as 0.9971 and 0.08133 for artificial neural network model, respectively." @default.
- W2796355688 created "2018-04-13" @default.
- W2796355688 creator A5038270010 @default.
- W2796355688 creator A5040015416 @default.
- W2796355688 date "2018-03-01" @default.
- W2796355688 modified "2023-10-14" @default.
- W2796355688 title "Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: A case study" @default.
- W2796355688 cites W1970097066 @default.
- W2796355688 cites W1995898121 @default.
- W2796355688 cites W1996980189 @default.
- W2796355688 cites W1997891585 @default.
- W2796355688 cites W2003807494 @default.
- W2796355688 cites W2036197816 @default.
- W2796355688 cites W2063083342 @default.
- W2796355688 cites W2068565362 @default.
- W2796355688 cites W2086439824 @default.
- W2796355688 cites W2121846964 @default.
- W2796355688 cites W2138484437 @default.
- W2796355688 cites W2144947767 @default.
- W2796355688 cites W2162284399 @default.
- W2796355688 cites W4233407746 @default.
- W2796355688 doi "https://doi.org/10.1177/0957456518763161" @default.
- W2796355688 hasPublicationYear "2018" @default.
- W2796355688 type Work @default.
- W2796355688 sameAs 2796355688 @default.
- W2796355688 citedByCount "20" @default.
- W2796355688 countsByYear W27963556882018 @default.
- W2796355688 countsByYear W27963556882019 @default.
- W2796355688 countsByYear W27963556882020 @default.
- W2796355688 countsByYear W27963556882021 @default.
- W2796355688 countsByYear W27963556882022 @default.
- W2796355688 countsByYear W27963556882023 @default.
- W2796355688 crossrefType "journal-article" @default.
- W2796355688 hasAuthorship W2796355688A5038270010 @default.
- W2796355688 hasAuthorship W2796355688A5040015416 @default.
- W2796355688 hasConcept C105795698 @default.
- W2796355688 hasConcept C11413529 @default.
- W2796355688 hasConcept C121332964 @default.
- W2796355688 hasConcept C127413603 @default.
- W2796355688 hasConcept C128990827 @default.
- W2796355688 hasConcept C139945424 @default.
- W2796355688 hasConcept C154945302 @default.
- W2796355688 hasConcept C198394728 @default.
- W2796355688 hasConcept C24890656 @default.
- W2796355688 hasConcept C33923547 @default.
- W2796355688 hasConcept C35515768 @default.
- W2796355688 hasConcept C3899301 @default.
- W2796355688 hasConcept C41008148 @default.
- W2796355688 hasConcept C45804977 @default.
- W2796355688 hasConcept C50644808 @default.
- W2796355688 hasConceptScore W2796355688C105795698 @default.
- W2796355688 hasConceptScore W2796355688C11413529 @default.
- W2796355688 hasConceptScore W2796355688C121332964 @default.
- W2796355688 hasConceptScore W2796355688C127413603 @default.
- W2796355688 hasConceptScore W2796355688C128990827 @default.
- W2796355688 hasConceptScore W2796355688C139945424 @default.
- W2796355688 hasConceptScore W2796355688C154945302 @default.
- W2796355688 hasConceptScore W2796355688C198394728 @default.
- W2796355688 hasConceptScore W2796355688C24890656 @default.
- W2796355688 hasConceptScore W2796355688C33923547 @default.
- W2796355688 hasConceptScore W2796355688C35515768 @default.
- W2796355688 hasConceptScore W2796355688C3899301 @default.
- W2796355688 hasConceptScore W2796355688C41008148 @default.
- W2796355688 hasConceptScore W2796355688C45804977 @default.
- W2796355688 hasConceptScore W2796355688C50644808 @default.
- W2796355688 hasIssue "3" @default.
- W2796355688 hasLocation W27963556881 @default.
- W2796355688 hasOpenAccess W2796355688 @default.
- W2796355688 hasPrimaryLocation W27963556881 @default.
- W2796355688 hasRelatedWork W2389287704 @default.
- W2796355688 hasRelatedWork W241785900 @default.
- W2796355688 hasRelatedWork W2516616538 @default.
- W2796355688 hasRelatedWork W2796355688 @default.
- W2796355688 hasRelatedWork W2945273126 @default.
- W2796355688 hasRelatedWork W3094369477 @default.
- W2796355688 hasRelatedWork W3101661746 @default.
- W2796355688 hasRelatedWork W3132082502 @default.
- W2796355688 hasRelatedWork W4285085378 @default.
- W2796355688 hasRelatedWork W4323042767 @default.
- W2796355688 hasVolume "49" @default.
- W2796355688 isParatext "false" @default.
- W2796355688 isRetracted "false" @default.
- W2796355688 magId "2796355688" @default.
- W2796355688 workType "article" @default.