Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796360003> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2796360003 abstract "The current thesis falls within the scope of Machine Learning, specifically it deals with pattern classification and regression or function approximation. Despite there are many approaches for high-dimensional pattern classification, most of them behave as “black boxes” whose operation mode is difficult or even impossible to explain. This thesis develops methods of dimensionality reduction in order to project or map high-dimensional classification problems into a two-dimensional space (i.e., a plane). Classifiers can thus be used to learn the mapped data and to create two-dimensional maps of the classification problems whose graphic nature makes intuitive and easy to understand. After reviewing the existing methods for dimensionality reduction, several approaches are proposed to map high-dimensional data into the 2D space while minimizing the class overlap. These methods allow mapping new patterns, not used during the mapping creation. Eight types of linear, quadratic and polynomial mappings are combined with four class overlap measures. These mappings are compared with other 34 dimensionality reduction methods existing in the literature over a wide collection of 71 classification problems. The best results are achieved by the mapping named Polynomial kernel discriminant analysis with degree 2 (PKDA2), which creates visual and self-explaining maps of the classification problems where a reference classifier (the support vector machine, or SVM) achieves an accuracy only slightly lower than using the original high-dimensional pat- terns. A web and a standalone graphical interface, developed in the programming languages PHP and Matlab, respectively, are also provided in order to visualize the 2D maps for any classification problem.In the scope of regression, a wide collection of regressors has been applied for the automatic temperature forecasting in household climate systems (HVAC). These systems have a direct impact both on the energy consumption and in the building comfort, so their exact and reliable modeling is very important for the development of energy efficiency plans. The use of regression approaches to forecasting the temperature evolution based on internal and external (climatic) conditions would allow evaluating the impact of changes in HVAC systems from the point of view of comfort. In order to develop an efficient model for the HVAC systems, the current thesis evaluates 40 regressors using a real data set generated in a smart building, the Centro Singular de Investigacion en Tecnoloxias da Informacion (CiTIUS) of the Universidade de Santiago de Compostela. Moreover, different models based on neural networks which allow the automatic re-training have also been developed and compared. This feature brings robustness to the models and allows them: 1) to learn circumstances never seen during training caused by exceptional climatic situations; and 2) to support alterations in the system components caused by errors or changes in the sensor devices." @default.
- W2796360003 created "2018-04-13" @default.
- W2796360003 creator A5050385229 @default.
- W2796360003 date "2018-01-01" @default.
- W2796360003 modified "2023-09-27" @default.
- W2796360003 title "Machine learning algorithms for pattern visualization in classification tasks and for automatic indoor temperature prediction" @default.
- W2796360003 hasPublicationYear "2018" @default.
- W2796360003 type Work @default.
- W2796360003 sameAs 2796360003 @default.
- W2796360003 citedByCount "0" @default.
- W2796360003 crossrefType "dissertation" @default.
- W2796360003 hasAuthorship W2796360003A5050385229 @default.
- W2796360003 hasConcept C111030470 @default.
- W2796360003 hasConcept C11413529 @default.
- W2796360003 hasConcept C119857082 @default.
- W2796360003 hasConcept C122280245 @default.
- W2796360003 hasConcept C12267149 @default.
- W2796360003 hasConcept C124101348 @default.
- W2796360003 hasConcept C153180895 @default.
- W2796360003 hasConcept C154945302 @default.
- W2796360003 hasConcept C36464697 @default.
- W2796360003 hasConcept C41008148 @default.
- W2796360003 hasConcept C52620605 @default.
- W2796360003 hasConcept C70518039 @default.
- W2796360003 hasConcept C78397625 @default.
- W2796360003 hasConcept C95623464 @default.
- W2796360003 hasConceptScore W2796360003C111030470 @default.
- W2796360003 hasConceptScore W2796360003C11413529 @default.
- W2796360003 hasConceptScore W2796360003C119857082 @default.
- W2796360003 hasConceptScore W2796360003C122280245 @default.
- W2796360003 hasConceptScore W2796360003C12267149 @default.
- W2796360003 hasConceptScore W2796360003C124101348 @default.
- W2796360003 hasConceptScore W2796360003C153180895 @default.
- W2796360003 hasConceptScore W2796360003C154945302 @default.
- W2796360003 hasConceptScore W2796360003C36464697 @default.
- W2796360003 hasConceptScore W2796360003C41008148 @default.
- W2796360003 hasConceptScore W2796360003C52620605 @default.
- W2796360003 hasConceptScore W2796360003C70518039 @default.
- W2796360003 hasConceptScore W2796360003C78397625 @default.
- W2796360003 hasConceptScore W2796360003C95623464 @default.
- W2796360003 hasLocation W27963600031 @default.
- W2796360003 hasOpenAccess W2796360003 @default.
- W2796360003 hasPrimaryLocation W27963600031 @default.
- W2796360003 hasRelatedWork W1747692387 @default.
- W2796360003 hasRelatedWork W1966203073 @default.
- W2796360003 hasRelatedWork W2076080604 @default.
- W2796360003 hasRelatedWork W2092484276 @default.
- W2796360003 hasRelatedWork W2117345453 @default.
- W2796360003 hasRelatedWork W2119071749 @default.
- W2796360003 hasRelatedWork W2146879744 @default.
- W2796360003 hasRelatedWork W2148830179 @default.
- W2796360003 hasRelatedWork W2165720444 @default.
- W2796360003 hasRelatedWork W2171366364 @default.
- W2796360003 hasRelatedWork W2312380889 @default.
- W2796360003 hasRelatedWork W2792866471 @default.
- W2796360003 hasRelatedWork W2909288227 @default.
- W2796360003 hasRelatedWork W2914786494 @default.
- W2796360003 hasRelatedWork W3088933838 @default.
- W2796360003 hasRelatedWork W3092092401 @default.
- W2796360003 hasRelatedWork W3128029394 @default.
- W2796360003 hasRelatedWork W3199262903 @default.
- W2796360003 hasRelatedWork W77140050 @default.
- W2796360003 hasRelatedWork W2140433602 @default.
- W2796360003 isParatext "false" @default.
- W2796360003 isRetracted "false" @default.
- W2796360003 magId "2796360003" @default.
- W2796360003 workType "dissertation" @default.