Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796388611> ?p ?o ?g. }
- W2796388611 endingPage "69" @default.
- W2796388611 startingPage "53" @default.
- W2796388611 abstract "Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio." @default.
- W2796388611 created "2018-04-13" @default.
- W2796388611 creator A5026364945 @default.
- W2796388611 creator A5032750577 @default.
- W2796388611 creator A5067060520 @default.
- W2796388611 creator A5082599988 @default.
- W2796388611 date "2018-07-01" @default.
- W2796388611 modified "2023-10-16" @default.
- W2796388611 title "Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis" @default.
- W2796388611 cites W154497019 @default.
- W2796388611 cites W1786686177 @default.
- W2796388611 cites W1968749943 @default.
- W2796388611 cites W1969407377 @default.
- W2796388611 cites W1971521993 @default.
- W2796388611 cites W1977116540 @default.
- W2796388611 cites W1985110006 @default.
- W2796388611 cites W1990065042 @default.
- W2796388611 cites W2019245857 @default.
- W2796388611 cites W2024237332 @default.
- W2796388611 cites W2024768423 @default.
- W2796388611 cites W2033777252 @default.
- W2796388611 cites W2034646853 @default.
- W2796388611 cites W2046224596 @default.
- W2796388611 cites W2046674752 @default.
- W2796388611 cites W2053304060 @default.
- W2796388611 cites W2056700360 @default.
- W2796388611 cites W2064474534 @default.
- W2796388611 cites W2067376192 @default.
- W2796388611 cites W2077619971 @default.
- W2796388611 cites W2078204800 @default.
- W2796388611 cites W2084516289 @default.
- W2796388611 cites W2093767424 @default.
- W2796388611 cites W2108910942 @default.
- W2796388611 cites W2153481825 @default.
- W2796388611 cites W2160421187 @default.
- W2796388611 cites W2167716329 @default.
- W2796388611 cites W2174317074 @default.
- W2796388611 cites W2230524333 @default.
- W2796388611 cites W2278037569 @default.
- W2796388611 cites W2407691794 @default.
- W2796388611 cites W2510050171 @default.
- W2796388611 cites W2549489119 @default.
- W2796388611 cites W2585519949 @default.
- W2796388611 doi "https://doi.org/10.1016/j.jsv.2018.01.023" @default.
- W2796388611 hasPublicationYear "2018" @default.
- W2796388611 type Work @default.
- W2796388611 sameAs 2796388611 @default.
- W2796388611 citedByCount "85" @default.
- W2796388611 countsByYear W27963886112018 @default.
- W2796388611 countsByYear W27963886112019 @default.
- W2796388611 countsByYear W27963886112020 @default.
- W2796388611 countsByYear W27963886112021 @default.
- W2796388611 countsByYear W27963886112022 @default.
- W2796388611 countsByYear W27963886112023 @default.
- W2796388611 crossrefType "journal-article" @default.
- W2796388611 hasAuthorship W2796388611A5026364945 @default.
- W2796388611 hasAuthorship W2796388611A5032750577 @default.
- W2796388611 hasAuthorship W2796388611A5067060520 @default.
- W2796388611 hasAuthorship W2796388611A5082599988 @default.
- W2796388611 hasBestOaLocation W27963886111 @default.
- W2796388611 hasConcept C106301342 @default.
- W2796388611 hasConcept C11413529 @default.
- W2796388611 hasConcept C121332964 @default.
- W2796388611 hasConcept C126255220 @default.
- W2796388611 hasConcept C127413603 @default.
- W2796388611 hasConcept C154945302 @default.
- W2796388611 hasConcept C174576160 @default.
- W2796388611 hasConcept C198394728 @default.
- W2796388611 hasConcept C199978012 @default.
- W2796388611 hasConcept C24890656 @default.
- W2796388611 hasConcept C2775924081 @default.
- W2796388611 hasConcept C2780155820 @default.
- W2796388611 hasConcept C30044814 @default.
- W2796388611 hasConcept C33923547 @default.
- W2796388611 hasConcept C41008148 @default.
- W2796388611 hasConcept C47446073 @default.
- W2796388611 hasConcept C62520636 @default.
- W2796388611 hasConcept C70836080 @default.
- W2796388611 hasConcept C85617194 @default.
- W2796388611 hasConcept C9679016 @default.
- W2796388611 hasConceptScore W2796388611C106301342 @default.
- W2796388611 hasConceptScore W2796388611C11413529 @default.
- W2796388611 hasConceptScore W2796388611C121332964 @default.
- W2796388611 hasConceptScore W2796388611C126255220 @default.
- W2796388611 hasConceptScore W2796388611C127413603 @default.
- W2796388611 hasConceptScore W2796388611C154945302 @default.
- W2796388611 hasConceptScore W2796388611C174576160 @default.
- W2796388611 hasConceptScore W2796388611C198394728 @default.
- W2796388611 hasConceptScore W2796388611C199978012 @default.
- W2796388611 hasConceptScore W2796388611C24890656 @default.
- W2796388611 hasConceptScore W2796388611C2775924081 @default.
- W2796388611 hasConceptScore W2796388611C2780155820 @default.
- W2796388611 hasConceptScore W2796388611C30044814 @default.
- W2796388611 hasConceptScore W2796388611C33923547 @default.
- W2796388611 hasConceptScore W2796388611C41008148 @default.
- W2796388611 hasConceptScore W2796388611C47446073 @default.
- W2796388611 hasConceptScore W2796388611C62520636 @default.
- W2796388611 hasConceptScore W2796388611C70836080 @default.