Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796448897> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2796448897 abstract "Let $G$ be a non-trivial finite group. The well-known Dold's theorem states that: There is no continuous $G$-equivariant map from an $n$-connected simplicial $G$-complex to a free simplicial $G$-complex of at most $n$. In this paper, we give a new generalization of Dold's theorem, by replacing dimension at most $n$ with a sharper combinatorial parameter. Indeed, this parameter is the chromatic number of a new family of graphs, called strong compatibility graphs, associated to the target space. Moreover, in a series of examples, we will see that one can hope to infer much more information from this generalization than ordinary Dold's theorem. In particular, we show that this new parameter is significantly better than the of target space almost all free $mathbb{Z}_2$-simplicial complex. In addition, some other applications of strong compatibility graphs will be presented as well. In particular, a new way for constructing triangle-free graphs with high chromatic numbers from an n-sphere $mathbb{S}^n$, and some new results on the limitations of topological methods for determining the chromatic number of graphs will be given." @default.
- W2796448897 created "2018-04-13" @default.
- W2796448897 creator A5050701495 @default.
- W2796448897 date "2018-04-02" @default.
- W2796448897 modified "2023-09-27" @default.
- W2796448897 title "Dold's Theorem from Viewpoint of Strong Compatibility Graphs" @default.
- W2796448897 cites W1493018669 @default.
- W2796448897 cites W1697221527 @default.
- W2796448897 cites W1986151196 @default.
- W2796448897 cites W2003995429 @default.
- W2796448897 cites W2047308468 @default.
- W2796448897 cites W2078051521 @default.
- W2796448897 cites W2081808419 @default.
- W2796448897 cites W2082249316 @default.
- W2796448897 cites W2097771028 @default.
- W2796448897 cites W2135552440 @default.
- W2796448897 cites W2326125182 @default.
- W2796448897 cites W2336317531 @default.
- W2796448897 cites W2806213769 @default.
- W2796448897 cites W2963402738 @default.
- W2796448897 cites W3152121415 @default.
- W2796448897 cites W327529882 @default.
- W2796448897 cites W585142893 @default.
- W2796448897 cites W645255940 @default.
- W2796448897 hasPublicationYear "2018" @default.
- W2796448897 type Work @default.
- W2796448897 sameAs 2796448897 @default.
- W2796448897 citedByCount "0" @default.
- W2796448897 crossrefType "posted-content" @default.
- W2796448897 hasAuthorship W2796448897A5050701495 @default.
- W2796448897 hasConcept C114614502 @default.
- W2796448897 hasConcept C118615104 @default.
- W2796448897 hasConcept C134306372 @default.
- W2796448897 hasConcept C171036898 @default.
- W2796448897 hasConcept C177148314 @default.
- W2796448897 hasConcept C187929450 @default.
- W2796448897 hasConcept C196956537 @default.
- W2796448897 hasConcept C202444582 @default.
- W2796448897 hasConcept C33923547 @default.
- W2796448897 hasConceptScore W2796448897C114614502 @default.
- W2796448897 hasConceptScore W2796448897C118615104 @default.
- W2796448897 hasConceptScore W2796448897C134306372 @default.
- W2796448897 hasConceptScore W2796448897C171036898 @default.
- W2796448897 hasConceptScore W2796448897C177148314 @default.
- W2796448897 hasConceptScore W2796448897C187929450 @default.
- W2796448897 hasConceptScore W2796448897C196956537 @default.
- W2796448897 hasConceptScore W2796448897C202444582 @default.
- W2796448897 hasConceptScore W2796448897C33923547 @default.
- W2796448897 hasLocation W27964488971 @default.
- W2796448897 hasOpenAccess W2796448897 @default.
- W2796448897 hasPrimaryLocation W27964488971 @default.
- W2796448897 hasRelatedWork W166735810 @default.
- W2796448897 hasRelatedWork W1794573077 @default.
- W2796448897 hasRelatedWork W1996684055 @default.
- W2796448897 hasRelatedWork W2003851838 @default.
- W2796448897 hasRelatedWork W2178589535 @default.
- W2796448897 hasRelatedWork W2461134002 @default.
- W2796448897 hasRelatedWork W2463904469 @default.
- W2796448897 hasRelatedWork W2564449991 @default.
- W2796448897 hasRelatedWork W2637680500 @default.
- W2796448897 hasRelatedWork W2741421175 @default.
- W2796448897 hasRelatedWork W2765824231 @default.
- W2796448897 hasRelatedWork W2795124187 @default.
- W2796448897 hasRelatedWork W2917790728 @default.
- W2796448897 hasRelatedWork W29234302 @default.
- W2796448897 hasRelatedWork W2951868891 @default.
- W2796448897 hasRelatedWork W2992297230 @default.
- W2796448897 hasRelatedWork W3041151908 @default.
- W2796448897 hasRelatedWork W3106333994 @default.
- W2796448897 hasRelatedWork W3195585909 @default.
- W2796448897 hasRelatedWork W74675767 @default.
- W2796448897 isParatext "false" @default.
- W2796448897 isRetracted "false" @default.
- W2796448897 magId "2796448897" @default.
- W2796448897 workType "article" @default.